Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Monte-Carlo tree search for stable structures of planar clusters

He Chang-Chun Liao Ji-Hai Yang Xiao-Bao

Citation:

Monte-Carlo tree search for stable structures of planar clusters

He Chang-Chun, Liao Ji-Hai, Yang Xiao-Bao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Illustrated by the case of the planar clusters, we propose a new method to search the possible stable structures by combining the structural identification and Monte-Carlo tree algorithm. We adopt two kinds of model-potential to describe the interaction between atoms:the pair interaction of Lennard-Jones potential and three-body interaction based on the Lennard-Jones potential. Taking the possible triangular lattice fragment as candidates, we introduce a new nomenclature to distinguish the structures, which can be used for the rapid congruence check. 1) We label the atoms on the triangular lattice according to the distances and the polar angles. where a given triangular structure has a corresponding serial number in the numbered plane. Note that the congruent structures can have a group of possible serial numbers. 2) We consider all the possible symmetrical operations including translation, inversion and rotation, and obtain the smallest one for the unique nomenclature of the structure. In conventional search of magic clusters, the global optimizations are performed for the structures with given number of atoms. Herein, we perform the Monte-Carlo tree search to study the evolution of stable structures with various numbers of atoms. From the structures of given number of atoms, we sample the structures according to their energy with the importance sampling, and then expand the structures to the structures with one more atom, where the congruence check with the nomenclature is adopted to avoid numerous repeated evaluations of candidates. Since the structures various numbers of atoms are correlated with each other, a searching tree will be obtained. In order to prevent the over-expansion of branches, we prove the “tree” according to energy to make the tree asymmetric growth to retain the low energy structure. The width and depth of search is balanced by the control of temperature in the Monte-Carlo tree search. For the candidates with lower energies, we further perform the local optimization to obtain the more stable structures. Our calculations show that the triangular lattice fragments will be more stable under the pair interaction of Lennard-Jones potential, which are in agreement with the previous studies. Under the three body interaction with the specific parameter, the hexagonal lattice fragments will be more stable, which are similar to the configurations of graphene nano-flakes. Combining the congruence check and Monte-Carlo tree search, we provide an effective avenue to screen the possible candidates and obtain the stable structures in a shorter period of time compared with the common global optimizations without the structural identification, which can be extended to search the stable structure for materials by the first-principles calculations.
      Corresponding author: Yang Xiao-Bao, scxbyang@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11474100) and the Fundamental Research Fund for the Central Universities,China (Grant No.2017MS119).
    [1]

    Baletto F, Ferrando R 2005 Rev. Mod. Phys. 77 371

    [2]

    Gong X F, Wang Y, Ning X J 2008 Chin. Phys. Lett. 25 468

    [3]

    Liu T D, Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 33601

    [4]

    Zhang M, Gao Y, Fang H P 2016 Chin. Phys. B 25 13602

    [5]

    de Heer W A 1993 Rev. Mod. Phys. 65 611

    [6]

    Knight W D, Clemenger K, Heer W A D, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141

    [7]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [8]

    Liu G Q, Zhang Y L, Wang Z X, Wang Y Z, Zhang X X, Zhang W X 2012 Comput. Theor. Chem. 993 118

    [9]

    Li S F, Zhao X J, Xu X S, Gao Y F, Zhang Z Y 2013 Phys. Rev. Lett. 111 115501

    [10]

    Kim S, Hwang S W, Kim M K, Shin D Y, Shin D H, Kim C O, Yang S B, Park J H, Hwang E, Choi S H, Ko G, Sim S, Sone C, Choi H J, Bae S, Hong B H 2012 ACS Nano 6 8203

    [11]

    Dahl J E, Liu S G, Carlson R M K 2003 Science 299 96

    [12]

    Yang X B, Zhao Y J, Xu H, Yakobson B I 2011 Phys. Rev. B 83 205314

    [13]

    Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I 2014 Acc. Chem. Res. 47 1349

    [14]

    Xu S G, Zhao Y J, Liao J H, Yang X B 2015 J. Chem. Phys. 142 214307

    [15]

    Hartke B 1993 J. Phys. Chem. 97 9973

    [16]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [17]

    Frontera C, Vives E, Castan T, Planes A 1995 Phys. Rev. B 51 11369

    [18]

    Kresse G, Jurgen H 1993 Phy. Rev. B 47 558

    [19]

    Zhang Y J, Xiao X Y, Li Y Q, Yan Y H 2012 Acta Phys. Sin. 61 093602 (in Chinese)[张英杰,肖绪洋,李永强, 颜云辉2012 61 093602]

    [20]

    Liu T D, Li Z P, Ji Q S, Shao G F, Fan T E, Wen Y H 2017 Acta Phys. Sin. 66 053601 (in Chinese)[刘暾东, 李泽鹏, 季清爽, 邵桂芳, 范天娥, 文玉华2017 66 053601]

    [21]

    Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta Phys. Sin. 64 042102 (in Chinese)[吴丽君, 随强涛, 张多, 张林, 祁阳2015 64 042102]

    [22]

    Li P F, Zhang Y G, Lei X L, Pan B C 2013 Acta Phys. Sin. 62 143602 (in Chinese)[李鹏飞, 张艳革, 雷雪玲, 潘必才2013 62 143602]

    [23]

    L J, Wang Y C, Zhu L, Ma Y M 2012 J. Chem. Phys. 137 084104

    [24]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [25]

    Solovyov I A, Solovyov A V, Greiner W, Koshelev A, Shutovich A 2003 Phys. Rev. Lett. 90 053401

    [26]

    Swiechowski M, Mandziuk J, Ong Y S 2016 IEEE Trans. Comp. Intel. AI. 8 218

    [27]

    Villar S S, Bowden J, Wason J 2015 Stat. Sci. 30 199

    [28]

    Sasaki Y, de Garis H 2004 Proceedings of the 2003 Congress on Evolutionary Computation Canberra, ACT, Australia, December 8-12, 2003 p886

    [29]

    Yang J, Zhang W Q 2007 Acta Phys. Sin. 56 4017 (in Chinese)[杨炯, 张文清2007 56 4017]

  • [1]

    Baletto F, Ferrando R 2005 Rev. Mod. Phys. 77 371

    [2]

    Gong X F, Wang Y, Ning X J 2008 Chin. Phys. Lett. 25 468

    [3]

    Liu T D, Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 33601

    [4]

    Zhang M, Gao Y, Fang H P 2016 Chin. Phys. B 25 13602

    [5]

    de Heer W A 1993 Rev. Mod. Phys. 65 611

    [6]

    Knight W D, Clemenger K, Heer W A D, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141

    [7]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [8]

    Liu G Q, Zhang Y L, Wang Z X, Wang Y Z, Zhang X X, Zhang W X 2012 Comput. Theor. Chem. 993 118

    [9]

    Li S F, Zhao X J, Xu X S, Gao Y F, Zhang Z Y 2013 Phys. Rev. Lett. 111 115501

    [10]

    Kim S, Hwang S W, Kim M K, Shin D Y, Shin D H, Kim C O, Yang S B, Park J H, Hwang E, Choi S H, Ko G, Sim S, Sone C, Choi H J, Bae S, Hong B H 2012 ACS Nano 6 8203

    [11]

    Dahl J E, Liu S G, Carlson R M K 2003 Science 299 96

    [12]

    Yang X B, Zhao Y J, Xu H, Yakobson B I 2011 Phys. Rev. B 83 205314

    [13]

    Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I 2014 Acc. Chem. Res. 47 1349

    [14]

    Xu S G, Zhao Y J, Liao J H, Yang X B 2015 J. Chem. Phys. 142 214307

    [15]

    Hartke B 1993 J. Phys. Chem. 97 9973

    [16]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [17]

    Frontera C, Vives E, Castan T, Planes A 1995 Phys. Rev. B 51 11369

    [18]

    Kresse G, Jurgen H 1993 Phy. Rev. B 47 558

    [19]

    Zhang Y J, Xiao X Y, Li Y Q, Yan Y H 2012 Acta Phys. Sin. 61 093602 (in Chinese)[张英杰,肖绪洋,李永强, 颜云辉2012 61 093602]

    [20]

    Liu T D, Li Z P, Ji Q S, Shao G F, Fan T E, Wen Y H 2017 Acta Phys. Sin. 66 053601 (in Chinese)[刘暾东, 李泽鹏, 季清爽, 邵桂芳, 范天娥, 文玉华2017 66 053601]

    [21]

    Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta Phys. Sin. 64 042102 (in Chinese)[吴丽君, 随强涛, 张多, 张林, 祁阳2015 64 042102]

    [22]

    Li P F, Zhang Y G, Lei X L, Pan B C 2013 Acta Phys. Sin. 62 143602 (in Chinese)[李鹏飞, 张艳革, 雷雪玲, 潘必才2013 62 143602]

    [23]

    L J, Wang Y C, Zhu L, Ma Y M 2012 J. Chem. Phys. 137 084104

    [24]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [25]

    Solovyov I A, Solovyov A V, Greiner W, Koshelev A, Shutovich A 2003 Phys. Rev. Lett. 90 053401

    [26]

    Swiechowski M, Mandziuk J, Ong Y S 2016 IEEE Trans. Comp. Intel. AI. 8 218

    [27]

    Villar S S, Bowden J, Wason J 2015 Stat. Sci. 30 199

    [28]

    Sasaki Y, de Garis H 2004 Proceedings of the 2003 Congress on Evolutionary Computation Canberra, ACT, Australia, December 8-12, 2003 p886

    [29]

    Yang J, Zhang W Q 2007 Acta Phys. Sin. 56 4017 (in Chinese)[杨炯, 张文清2007 56 4017]

  • [1] Zhang Chun-Yan. High-order harmonic platform extension and cluster expansion of H ion cluster. Acta Physica Sinica, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] Li Yuan, Peng Ping. Identification and tracking of different types of crystalline nucleiduring isothermal crystallization of amorphous Ag. Acta Physica Sinica, 2019, 68(7): 076401. doi: 10.7498/aps.68.20182188
    [3] Zheng Zhi-Xiu, Zhang Lin. Atomic-scale simulation study of structural changes of Fe-Cu binary system containing Cu clusters embedded in the Fe matrix during heating. Acta Physica Sinica, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [4] Wang Hua, Chen Qiong, Wang Wen-Guang, Hou Mei-Ying. Experimental study of clustering behaviors in granular gases. Acta Physica Sinica, 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [5] Guo Gu-Qing, Wu Shi-Yang, Cai Guang-Bo, Yang Liang. Identifying icosahedron-like clusters in metallic glasses. Acta Physica Sinica, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [6] Wu Li-Jun, Sui Qiang-Tao, Zhang Duo, Zhang Lin, Qi Yang. Computational study of structures and electronic properties of SimGen (m+n=9) clusters. Acta Physica Sinica, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [7] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] Guo Zhao, Lu Bin, Jiang Xue, Zhao Ji-Jun. Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations. Acta Physica Sinica, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [9] Han Xiao-Jing, Wang Yin, Lin Zheng-Zhe, Zhang Wen-Xian, Zhuang Jun, Ning Xi-Jing. Theoretical prediction of the growth probabilities for cluster isomers. Acta Physica Sinica, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [10] Fan Qin-Na, Li Wei, Zhang Lin. Molecular dynamics study of relaxation and local structure changes in a rapidly quenched molten Cu57 cluster. Acta Physica Sinica, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [11] E Xiao-Liang, Duan Hai-Ming. Study of the structure evolution and ground state energy of ConCu55-n(n=0—55) bimetallic clusters by using the Gupta potential combined with a genetic algorithm. Acta Physica Sinica, 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [12] Zhao Qian, Zhang Lin, Qi Yang, Zhang Zong-Ning. Molecular dynamics study of structures of a Cu13 cluster supported on a Cu(001) surface at low temperatures. Acta Physica Sinica, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [13] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [14] Gu Juan, Wang Shan-Ying, Gou Bing-Cong. The geometrical structure, electronic structure and magnetism of bimetallic AunM2 (n=1,2; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) clusters. Acta Physica Sinica, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [15] Zhang Lin, Xu Song-Ning, Li Wei, Sun Hai-Xia, Zhang Cai-Bei. Structural changes during freezing and coalescing of small sized clusters on atomic scale. Acta Physica Sinica, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [16] Yang Ming, Liu Jian-Sheng, Cai Yi, Wang Wen-Tao, Wang Cheng, Ni Guo-Quan, Li Ru-Xin, Xu Zhi-Zhan. Diagnosis and investigation of the formation of low density and large sized clusters. Acta Physica Sinica, 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [17] Zhou Shi-Yun, Wang Yin, Ning Xi-Jing. A quasi-dynamics method for searching for cluster isomers. Acta Physica Sinica, 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [18] Yuan Yong-Bo, Liu Yu-Zhen, Deng Kai-Ming, Yang Jin-Long. Assignment of photoelectron spectra of SiN cluster. Acta Physica Sinica, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [19] Fang Fang, Jiang Gang, Wang Hong-Yan. Structures and properties of small bimetallic PdnPbm(n+m≤5) clusters. Acta Physica Sinica, 2006, 55(5): 2241-2248. doi: 10.7498/aps.55.2241
    [20] Hao Jing-An, Zheng Hao-Ping. Theoretical calculation of structures and properties of Ga6N6 cluster. Acta Physica Sinica, 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
Metrics
  • Abstract views:  6104
  • PDF Downloads:  438
  • Cited By: 0
Publishing process
  • Received Date:  07 April 2017
  • Accepted Date:  18 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map