Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Flaws in classical proofs of vector Kirchhoff integral theorem and its new strict proof

Huang Xiao-Wei Sheng Xin-Qing

Citation:

Flaws in classical proofs of vector Kirchhoff integral theorem and its new strict proof

Huang Xiao-Wei, Sheng Xin-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The vector Kirchhoff integral theorem (VKI) is an important formula in electromagnetic (EM) theory,especially it is a basis of the optical diffraction theory.Recently,it has been found that there exist some flaws in the proofs presented in the literature.There are mainly two types of methods to prove the VKI.The first type of method is to employ the vector analysis to prove the VKI directly.Some flaws of this type of proof presented in the literature have been found and pointed out in this paper.The second type of method is to employ the scalar Kirchhoff Integral (SKI) to directly obtain the VKI. The SKI was first derived by Kirchhoff (1882).In spite of its mathematical inconsistency and its physical deficiencies, the SKI works remarkably well in the optical domain and has been the basis of most of the work on diffraction.However, the proofs for SKI usually need the scalar radiation conditions.The scalar radiation condition was first proposed by Sommerfeld to ensure the uniqueness of the solution of certain exterior boundary value problems in mathematical physics. But whether the scalar radiation conditions were suitable for the EM was not sure.In fact,for electromagnetic field,we have another vector radiation conditions which have been verified to be adaptable for all the radiation and scattering fields.It is difficult to obtain the scalar radiation conditions directly by just separating three Cartesian directions from the vector one,because the different scalar components are coupled together after the rotation and cross product operation.Actually,few strict proofs could be found to support the fact that EM satisfies the scalar radiation condition. So as the supplementary,the scalar radiation conditions will be derived in detail with far-field approximation method in this paper.To avoid using the scalar radiation condition which may bring some non-rigorousness,we perform a new strict proof for the VKI by using the vector analysis identities. The rest of this paper is organized as follows.In Section 2,the different proofs presented in the classical books will be analyzed in detail.The flaws existing in these proofs will be pointed out.After that,in Section 3,based on the Stratton-Chu formula,a new strict proof will be given with using the vector identities.In Section 4,a sensitivity analysis is numerically performed to confirm our demonstration.Finally,the conclusions are drawn from the present study in Section 5.The scalar radiation conditions will be discussed in the appendix.
      Corresponding author: Sheng Xin-Qing, xsheng@bit.edu.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFB0202500).
    [1]

    Jackson J D 1998 Classical Electrodynamics (3rd Ed.) (New York:Wiley-Interscience) pp479-482

    [2]

    Born M, Wolf E 1986 Principles of Optics (6th Ed.) (New York:Pergamon Press Ltd) pp375-378

    [3]

    Buchwald J Z, Yeang C P 2016 Arch. Hist. Exact Sci. 70 463

    [4]

    Wang X F, Wang J Y 2011 Acta Phys. Sin. 60 025212 (in Chinese)[王晓方, 王晶宇2011 60 025212]

    [5]

    Gordon W B 1975 IEEE Trans. Antennas Propagat. 23 590

    [6]

    Umul Y Z 2013 Opt. Commun. 291 48

    [7]

    Wang A, Prata A 1995 Opt. Soc. Am. A 12 1161

    [8]

    Liu C X, Cheng C F, Ren X R, Liu M, Teng S Y, Xu Z Z 2004 Acta Phys. Sin. 53 427 (in Chinese)[刘春香, 程传福, 任晓荣, 刘曼, 滕树云, 徐至展2004 53 427]

    [9]

    Sheng X Q 2016 Electromagnetic Theory, Computation, Application (Beijing:Higher Education Press) pp169-171(in Chinese)[盛新庆2016电磁理论、计算、应用(北京:高等教育出版社)第169–171页]

    [10]

    Kong J A 1986 Electromagnetic Wave Theory (New York:Wiley-Interscience) pp381-383

    [11]

    Ge D B 2009 Electromagnetic Wave Theory (Beijing:Science Press) pp334-337(in Chinese)[葛德彪2009电磁波理论(北京:科学出版社)第334–337页]

    [12]

    Zhang S J 2009 Engineering Electromagnetics (Beijing:Science Press) pp638-640(in Chinese)[张善杰2009工程电磁场(北京:科学出版社)第638–640页]

    [13]

    Yang R G 2008 Advanced Electromagnetic Theory (Beijing:Higher Education Press) pp175-177(in Chinese)[杨儒贵2008高等电磁理论(北京:高等教育出版社)第175–177页]

    [14]

    Gong Z L 2010 Modern Electromagnetic Theory (2nd Ed.) (Beijing:Peking University Press) pp288-291(in Chinese)[龚中麟2010近代电磁理论第2版(北京:北京大学出版社)第288–291页]

    [15]

    Schot S H 1992 Hist. Math. 19 385

    [16]

    Sommerfeld A 1949 Partial Differential Equations in Physics (New York:Academic Press) pp188-193

    [17]

    Ji J R 2007 Advanced Optical Tutorial (Beijing:Science Press) pp166-168(in Chinese)[季家镕2007高等光学教程(北京:科学出版社)第166–168页]

    [18]

    Goodman J W 1996 Introduction to Fourier Optics (2nd Ed.) (New York:McGraw-Hill) pp42-44

    [19]

    Huang K Z 2009 Tensor Analysis (2nd Ed.) (Beijing:Tsinghua University Press) pp139-149(in Chinese)[黄克智2009张量分析第2版(北京:清华大学出版)第139–149页]

    [20]

    Sheng X Q 2008 A Brief Treatise on Computational Electromagnetics (2nd Ed.) (Hefei:Press of University of Science and Technology of China) pp42-43(in Chinese)[盛新庆2008计算电磁学要论第2版(合肥:中国科学技术大学出版社)第42–43页]

    [21]

    Tai C T 1997 Generalized Vector and Dyadic Analysis (2nd Ed.) (New York:Wiley-Interscience) pp124-127

  • [1]

    Jackson J D 1998 Classical Electrodynamics (3rd Ed.) (New York:Wiley-Interscience) pp479-482

    [2]

    Born M, Wolf E 1986 Principles of Optics (6th Ed.) (New York:Pergamon Press Ltd) pp375-378

    [3]

    Buchwald J Z, Yeang C P 2016 Arch. Hist. Exact Sci. 70 463

    [4]

    Wang X F, Wang J Y 2011 Acta Phys. Sin. 60 025212 (in Chinese)[王晓方, 王晶宇2011 60 025212]

    [5]

    Gordon W B 1975 IEEE Trans. Antennas Propagat. 23 590

    [6]

    Umul Y Z 2013 Opt. Commun. 291 48

    [7]

    Wang A, Prata A 1995 Opt. Soc. Am. A 12 1161

    [8]

    Liu C X, Cheng C F, Ren X R, Liu M, Teng S Y, Xu Z Z 2004 Acta Phys. Sin. 53 427 (in Chinese)[刘春香, 程传福, 任晓荣, 刘曼, 滕树云, 徐至展2004 53 427]

    [9]

    Sheng X Q 2016 Electromagnetic Theory, Computation, Application (Beijing:Higher Education Press) pp169-171(in Chinese)[盛新庆2016电磁理论、计算、应用(北京:高等教育出版社)第169–171页]

    [10]

    Kong J A 1986 Electromagnetic Wave Theory (New York:Wiley-Interscience) pp381-383

    [11]

    Ge D B 2009 Electromagnetic Wave Theory (Beijing:Science Press) pp334-337(in Chinese)[葛德彪2009电磁波理论(北京:科学出版社)第334–337页]

    [12]

    Zhang S J 2009 Engineering Electromagnetics (Beijing:Science Press) pp638-640(in Chinese)[张善杰2009工程电磁场(北京:科学出版社)第638–640页]

    [13]

    Yang R G 2008 Advanced Electromagnetic Theory (Beijing:Higher Education Press) pp175-177(in Chinese)[杨儒贵2008高等电磁理论(北京:高等教育出版社)第175–177页]

    [14]

    Gong Z L 2010 Modern Electromagnetic Theory (2nd Ed.) (Beijing:Peking University Press) pp288-291(in Chinese)[龚中麟2010近代电磁理论第2版(北京:北京大学出版社)第288–291页]

    [15]

    Schot S H 1992 Hist. Math. 19 385

    [16]

    Sommerfeld A 1949 Partial Differential Equations in Physics (New York:Academic Press) pp188-193

    [17]

    Ji J R 2007 Advanced Optical Tutorial (Beijing:Science Press) pp166-168(in Chinese)[季家镕2007高等光学教程(北京:科学出版社)第166–168页]

    [18]

    Goodman J W 1996 Introduction to Fourier Optics (2nd Ed.) (New York:McGraw-Hill) pp42-44

    [19]

    Huang K Z 2009 Tensor Analysis (2nd Ed.) (Beijing:Tsinghua University Press) pp139-149(in Chinese)[黄克智2009张量分析第2版(北京:清华大学出版)第139–149页]

    [20]

    Sheng X Q 2008 A Brief Treatise on Computational Electromagnetics (2nd Ed.) (Hefei:Press of University of Science and Technology of China) pp42-43(in Chinese)[盛新庆2008计算电磁学要论第2版(合肥:中国科学技术大学出版社)第42–43页]

    [21]

    Tai C T 1997 Generalized Vector and Dyadic Analysis (2nd Ed.) (New York:Wiley-Interscience) pp124-127

  • [1] Li Ya-Hui, Liang Run-Fu, Qiu Jun-Peng, Lin Zi-Yang, Qu Jun-Le, Liu Li-Xin, Yin Jun, Niu Han-Ben. Vector analysis of the coherent anti-Stokes Raman scattering signals generated under the tightly focused condition. Acta Physica Sinica, 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [2] Li Xing-Ji, Lan Mu-Jie, Liu Chao-Ming, Yang Jian-Qun, Sun Zhong-Liang, Xiao Li-Yi, He Shi-Yu. The influence of bias conditions on ionizing radiation damage of NPN and PNP transistors. Acta Physica Sinica, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [3] Li Xing-Ji, Liu Chao-Ming, Sun Zhong-Liang, Lan Mu-Jie, Xiao Li-Yi, He Shi-Yu. Radiation damage induced by various particles on CC4013 devices. Acta Physica Sinica, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [4] Cheng Tian-Hai, Gu Xing-Fa, Yu Tao, Chen Liang-Fu, Tian Guo-Liang. Effect of surface reflectances on the space-based vector radiative detection. Acta Physica Sinica, 2009, 58(10): 7368-7375. doi: 10.7498/aps.58.7368
    [5] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan, Zhao Ke-Jie. Spectrum analysis of X-ray based on Bohr-Sommerfeld quantum theory. Acta Physica Sinica, 2009, 58(8): 5318-5322. doi: 10.7498/aps.58.5318
    [6] Ye Hong-Xia, Jin Ya-Qiu. A novel approach of dual GPOF /DCIM for fast computation of the sommerfeld integrals and electromagnetic scattering from an object partially embedded in dielectric half-space. Acta Physica Sinica, 2009, 58(7): 4579-4589. doi: 10.7498/aps.58.4579
    [7] Cao Peng-Fei, Cheng Lin, Zhang Xiao-Ping. Vectorial Hopkins formulation depending on angles of off-axis illumination. Acta Physica Sinica, 2008, 57(11): 6946-6954. doi: 10.7498/aps.57.6946
    [8] Wang Bin, Tang Chang-Jian, Liu Pu-Kun. Cherenkov radiation of relativistic electron beam in the ion-channel. Acta Physica Sinica, 2006, 55(11): 5953-5958. doi: 10.7498/aps.55.5953
    [9] Liu Chun-Xiang, Cheng Chuan-Fu, Ren Xiao-Rong, Liu Man, Teng Shu-Yun, Xu Zhi-Zhan. Green's function method of light scattering from random surfaces compares with Kirchhoff's approximation. Acta Physica Sinica, 2004, 53(2): 427-435. doi: 10.7498/aps.53.427
    [10] Wang Yan-Shen. . Acta Physica Sinica, 2002, 51(7): 1458-1466. doi: 10.7498/aps.51.1458
    [11] Guo Li-Xin, Wu Zhen-Sen. . Acta Physica Sinica, 2001, 50(1): 42-47. doi: 10.7498/aps.50.42
    [12] Qing Xin. . Acta Physica Sinica, 2000, 49(2): 194-200. doi: 10.7498/aps.49.194
    [13] DING WU. RETARDED EFFECT,LIFE TIME AND COHERENT CONDI-TIONS OF THE SUPERRADIATION PULSES EMITTED BY THE PREBUNCHED ELECTRON BEAM. Acta Physica Sinica, 1999, 48(1): 74-77. doi: 10.7498/aps.48.74
    [14] LI CHUN-FANG, GUO GUANG-CAN. CONDITIONS FOR THE EXISTENCE OF NON-ZERO GEOMETRIC PHASE AND ITS FORMULA. Acta Physica Sinica, 1996, 45(6): 897-903. doi: 10.7498/aps.45.897
    [15] SUN YI-CAI, SHI JUN-SHENG. . Acta Physica Sinica, 1995, 44(12): 1869-1878. doi: 10.7498/aps.44.1869
    [16] ZHANG YI-BO. STUDY OF RELATIONSHIP BETWEEN SPONTANEOUS RADIATION AND STIMULATED RADIATION IN CERENKOV FREE ELECTRON LASERS. Acta Physica Sinica, 1987, 36(10): 1344-1348. doi: 10.7498/aps.36.1344
    [17] HONG XI-CHUN, HUANG WEI-GANG, WANG SHAO-MIN. DIFFRACTION INTEGRAL FORMULA FOR MISALIGNED OPTICAL SYSTEMS. Acta Physica Sinica, 1982, 31(12): 75-83. doi: 10.7498/aps.31.75
    [18] . Acta Physica Sinica, 1965, 21(5): 1083-1088. doi: 10.7498/aps.21.1083
    [19] . Acta Physica Sinica, 1965, 21(5): 1049-1060. doi: 10.7498/aps.21.1049
    [20] О ЧЕРЕНКОВСКОМ ИЗЛУЧЕНИИ ЗАРЯЖеННЫХ ЧАСТИЦ С ОРИЕНТИРОВАННЫМ СПИНОМ. Acta Physica Sinica, 1964, 20(2): 97-103. doi: 10.7498/aps.20.97
Metrics
  • Abstract views:  6732
  • PDF Downloads:  333
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2017
  • Accepted Date:  03 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map