Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of correlated pseudorandom varibales

Ma Xu-Bo Liu Jia-Yi Xu Jia-Yi Lu Fan Chen Yi-Xue

Citation:

Generation of correlated pseudorandom varibales

Ma Xu-Bo, Liu Jia-Yi, Xu Jia-Yi, Lu Fan, Chen Yi-Xue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • When Monte Carlo method is used to study many problems, it is sometimes necessary to sample correlated pseudorandom variables. Previous studies have shown that the Cholesky decomposition method can be used to generate correlated pseudorandom variables when the covariance matrix satisfies the positive eigenvalue condition. However, some covariance matrices do not satisfy the condition. In this study, the theoretical formula for generating correlated pseudorandom variables is deduced, and it is found that Cholesky decomposition is not the only way to generate multidimensional correlated pseudorandom variables. The other matrix decomposition methods can be used to generate multidimensional relevant random variables if the positive eigenvalue condition is satisfied. At the same time, we give the formula for generating the multidimensional random variable by using the covariance matrix, the relative covariance matrix and the correlation coefficient matrix to facilitate the later use. In order to verify the above theory, a simple test example with 33 relative covariance matrix is used, and it is found that the correlation coefficient results obtained by Jacobi method are consistent with those from the Cholesky method. The correlation coefficients are more close to the real values with increasing the sampling number. After that, the antineutrino energy spectra of Daya Bay are generated by using Jacobi matrix decomposition and Cholesky matrix decomposition method, and their relative errors of each energy bin are in good agreement, and the differences are less than 5.0% in almost all the energy bins. The above two tests demonstrate that the theoretical formula for generating correlated pseudorandom variables is corrected. Generating correlated pseudorandom variables is used in nuclear energy to analyze the uncertainty of nuclear data library in reactor simulation, and many codes have been developed, such as one-, two-and three-dimensional TSUNAMI, SCALE-SS, XSUSA, and SUACL. However, when the method of generating correlated pseudorandom variables is used to decompose the 238U radiation cross section covariance matrix, it is found that the negative eigenvalue appears and previous study method cannot be used. In order to deal with the 238U radiation cross section covariance matrix and other similar matrices, the zero correction is proposed. When the zero correction is used in Cholesky diagonal correction and Jacobi eigenvalue zero correction, it is found that Jacobi negative eigenvalue zero correction error is smaller than that with Cholesky diagonal correction. In future, the theory about zero correction will be studied and it will focus on ascertaining which correction method is better for the negative eigenvalue matrix.
      Corresponding author: Ma Xu-Bo, maxb@ncepu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 11390383) and Fundamental Research Funds for the Central Universities of China (Grant No. 2015ZZD12).
    [1]

    Pei L C 1989 Computer Stochastic Simulation (Changsha:Hunan Science and Technology Press) p1(in Chinese)[裴鹿成1989计算机随机模拟(长沙:湖南科学出版社)第1页]

    [2]

    Xu S Y 2006 Monte Carlo Method and its Application in Nuclear Physics Experiment (2nd Ed.) (Beijing:Atomic Energy Press) p1(in Chinese)[许淑艳2006蒙特卡罗方法在实验核物理中的应用(第二版) (北京:原子能出版社)第1页]

    [3]

    Zhu Y S 2016 Statistic Analysis in High Energy Physics (Beijing:Science Press) p1(in Chinese)[朱永生2016高能物理实验统计分析(北京:科学出版社责任有限公司)第1页]

    [4]

    Landau D P, Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (New York:Cambridge University Press) p1

    [5]

    Ferguson D M, Siepmann J I, Truhlar D G 1999 Monte Carlo Methods in Chemical Physics (New York:John Wiley & Sons, Inc.) p1

    [6]

    Matthew R B 2011 Ph. D. Dissertation (Hamilton:Mcmaster university)

    [7]

    Hu Z H, Ye T, Liu X G, Wang J 2017 Acta Phys. Sin. 66 012801(in Chinese)[胡泽华, 叶涛, 刘雄国, 王佳2017 66 012801]

    [8]

    Wen D Z, Zhuo R H, Ding D J, Zheng H, Cheng J, Li Z H 2012 Acta Phys. Sin. 61 220204 (in Chinese)[文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏2012 61 220204]

    [9]

    Guo Q 2011 M. S. Dissertation (Jiangsu:Soochow University) (in Chinese)[郭强2001硕士学位论文(江苏:苏州大学)]

    [10]

    An F P, Balantekin A B, Band H R, et al. 2017 Chin. Phys. C 41 013002

    [11]

    An F P, Balantekin A B, Band H R, et al. 2016 Phys. Rev. Lett. 116 061801

    [12]

    Ivanov K, Avramova M, Kamerow S, Kodeli I, Sartori E, Ivanov E, Cabellos O 2013 Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs, Volume I:Specification and Support Data for Neutronics Cases (Phase I), NEA/NSC/DOC (2013) 7 https://www.oecd-nea.org/science/docs/2013/nsc-doc2013-7pdf

    [13]

    Yamamoto A, Kinoshita K, Watanabe T, Endo T, Kodama Y, Ohoka Y, Ushino T, Nagano H 2015 Nucl. Sci. Engineer. 181 160

    [14]

    Park H J, Shim H J, Kim C H 2012 Sci. Technol. Nucl. Install. 2012 247

    [15]

    Curtis E M 2013 M. S. Dissertation (Hamilton:Mcmaster University)

    [16]

    Dan G C, Mihaela I B 2004 Nucl. Sci. Engineer. 147 204

    [17]

    Zwermann W, Aures A, Gallner L, et al. 2014 Nucl. Engineer. Technol. 46 3

    [18]

    Wan C H, Cao L Z, Wu H C, Zu T J, Shen W 2015 Atom. Energy Sci. Technol. 49 11(in Chinese)[万承辉, 曹良志, 吴宏春, 祖铁军, 沈伟2015原子能科学技术49 11]

    [19]

    Wang X Z, Yu H, Wang W M, Hu Y, Yang X Y 2014 Atom. Energy Sci. Technol. 48 9(in Chinese)[王新哲, 喻宏, 王文明, 胡赟, 杨晓燕2014原子能科学技术48 9]

    [20]

    Macfarlanef R, Kahler A 2010 Nuclear Data Sheets 111 2739

  • [1]

    Pei L C 1989 Computer Stochastic Simulation (Changsha:Hunan Science and Technology Press) p1(in Chinese)[裴鹿成1989计算机随机模拟(长沙:湖南科学出版社)第1页]

    [2]

    Xu S Y 2006 Monte Carlo Method and its Application in Nuclear Physics Experiment (2nd Ed.) (Beijing:Atomic Energy Press) p1(in Chinese)[许淑艳2006蒙特卡罗方法在实验核物理中的应用(第二版) (北京:原子能出版社)第1页]

    [3]

    Zhu Y S 2016 Statistic Analysis in High Energy Physics (Beijing:Science Press) p1(in Chinese)[朱永生2016高能物理实验统计分析(北京:科学出版社责任有限公司)第1页]

    [4]

    Landau D P, Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (New York:Cambridge University Press) p1

    [5]

    Ferguson D M, Siepmann J I, Truhlar D G 1999 Monte Carlo Methods in Chemical Physics (New York:John Wiley & Sons, Inc.) p1

    [6]

    Matthew R B 2011 Ph. D. Dissertation (Hamilton:Mcmaster university)

    [7]

    Hu Z H, Ye T, Liu X G, Wang J 2017 Acta Phys. Sin. 66 012801(in Chinese)[胡泽华, 叶涛, 刘雄国, 王佳2017 66 012801]

    [8]

    Wen D Z, Zhuo R H, Ding D J, Zheng H, Cheng J, Li Z H 2012 Acta Phys. Sin. 61 220204 (in Chinese)[文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏2012 61 220204]

    [9]

    Guo Q 2011 M. S. Dissertation (Jiangsu:Soochow University) (in Chinese)[郭强2001硕士学位论文(江苏:苏州大学)]

    [10]

    An F P, Balantekin A B, Band H R, et al. 2017 Chin. Phys. C 41 013002

    [11]

    An F P, Balantekin A B, Band H R, et al. 2016 Phys. Rev. Lett. 116 061801

    [12]

    Ivanov K, Avramova M, Kamerow S, Kodeli I, Sartori E, Ivanov E, Cabellos O 2013 Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs, Volume I:Specification and Support Data for Neutronics Cases (Phase I), NEA/NSC/DOC (2013) 7 https://www.oecd-nea.org/science/docs/2013/nsc-doc2013-7pdf

    [13]

    Yamamoto A, Kinoshita K, Watanabe T, Endo T, Kodama Y, Ohoka Y, Ushino T, Nagano H 2015 Nucl. Sci. Engineer. 181 160

    [14]

    Park H J, Shim H J, Kim C H 2012 Sci. Technol. Nucl. Install. 2012 247

    [15]

    Curtis E M 2013 M. S. Dissertation (Hamilton:Mcmaster University)

    [16]

    Dan G C, Mihaela I B 2004 Nucl. Sci. Engineer. 147 204

    [17]

    Zwermann W, Aures A, Gallner L, et al. 2014 Nucl. Engineer. Technol. 46 3

    [18]

    Wan C H, Cao L Z, Wu H C, Zu T J, Shen W 2015 Atom. Energy Sci. Technol. 49 11(in Chinese)[万承辉, 曹良志, 吴宏春, 祖铁军, 沈伟2015原子能科学技术49 11]

    [19]

    Wang X Z, Yu H, Wang W M, Hu Y, Yang X Y 2014 Atom. Energy Sci. Technol. 48 9(in Chinese)[王新哲, 喻宏, 王文明, 胡赟, 杨晓燕2014原子能科学技术48 9]

    [20]

    Macfarlanef R, Kahler A 2010 Nuclear Data Sheets 111 2739

  • [1] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [2] Zhang Xian, Liu Shi-Chang, Wei Jun-Xia, Li Shu, Wang Xin, Shangguan Dan-Hua. Monte Carlo global variance reduction method combining source bias and weight window. Acta Physica Sinica, 2024, 73(4): 042801. doi: 10.7498/aps.73.20231493
    [3] Shangguan Dan-Hua, Yan Wei-Hua, Wei Jun-Xia, Gao Zhi-Ming, Chen Yi-Bing, Ji Zhi-Cheng. Efficient Monte Carlo algorithm of time-dependent particle transport problem in multi-physics coupling calculation. Acta Physica Sinica, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [4] Deng Li, Li Rui, Wang Xin, Fu Yuan-Guang. Monte Carlo simulation technology based on characteristic γ-ray spectrum analysis. Acta Physica Sinica, 2020, 69(11): 112801. doi: 10.7498/aps.69.20200279
    [5] Shangguan Dan-Hua, Ji Zhi-Cheng, Deng Li, Li Rui, Li Gang, Fu Yuan-Guang. New strategy for global tallying in Monte Carlo criticality calculation. Acta Physica Sinica, 2019, 68(12): 122801. doi: 10.7498/aps.68.20182276
    [6] Chen Zhong, Zhao Zi-Jia, Lü Zhong-Liang, Li Jun-Han, Pan Dong-Mei. Numerical simulation of deuterium-tritium fusion reaction rate in laser plasma based on Monte Carlo-discrete ordinate method. Acta Physica Sinica, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [7] Li Shu. Monte Carlo method for computing relativistic photon-Maxwellian electron scattering cross sections. Acta Physica Sinica, 2018, 67(21): 215201. doi: 10.7498/aps.67.20180932
    [8] ShangGuan Dan-Hua, Deng Li, Li Gang, Zhang Bao-Yin, Ma Yan, Fu Yuan-Guang, Li Rui, Hu Xiao-Li. Algorithm researches for efficient global tallying in criticality calculation of Monte Carlo method. Acta Physica Sinica, 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [9] Shangguan Dan-Hua, Deng Li, Zhang Bao-Yin, Ji Zhi-Cheng, Li Gang. Efficient method of calculating Shannon entropy of non-static transport problem in message passing parallel programming environment. Acta Physica Sinica, 2016, 65(14): 142801. doi: 10.7498/aps.65.142801
    [10] Lin Shu, Yan Yang-Jiao, Li Yong-Dong, Liu Chun-Liang. Monte-Carlo method of computing multipactor threshold in microwave devices. Acta Physica Sinica, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [11] Yang Liang, Wei Cheng-Yang, Lei Li-Ming, Li Zhen-Xi, Li Sai-Yi. Monte Carlo simulations of microstructure and texture evolution during annealing of a two-phase titanium alloy. Acta Physica Sinica, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [12] Li Peng, Xu Zhou, Li Ming, Yang Xing-Fan. A Monte Carlo simulation of secondary electron transport in diamond. Acta Physica Sinica, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [13] Wen De-Zhi, Zhuo Ren-Hong, Ding Da-Jie, Zheng Hui, Cheng Jing, Li Zheng-Hong. Generation of correlated pseudorandom variables in Monte Carlo simulation. Acta Physica Sinica, 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [14] Zhang Peng-Fei, Su Zhao-Feng, Sun Jian-Feng, Yang Hai-Liang, Li Yong-Dong, Gao Yi, Sun Jiang, Wang Hong-Guang, Yin Jia-Hui, Liang Tian-Xue, Sun Feng-Ju, Wang Zhi-Guo. Numerical investigation of x-ray energy spectrum of rod-pinch diode. Acta Physica Sinica, 2011, 60(10): 100204. doi: 10.7498/aps.60.100204
    [15] Zhao Xue-Feng, Li San-Wei, Jiang Gang, Wang Chuan-Ke, Li Zhi-Chao, Hu Feng, Li Chao-Guang. Monte Carlo simulation of hard X-ray producedby suprathermal electrons interactionwith golden hohlraum targets. Acta Physica Sinica, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [16] Zhang Bao-Wu, Zhang Ping-Ping, Ma Yan, Li Tong-Bao. Simulations of one-dimensional transverse laser cooling of Cr atomic beam with Monte Carlo method. Acta Physica Sinica, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [17] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai. The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [18] Sun Xian-Ming, Han Yi-Ping, Shi Xiao-Wei. Monte Carlo simulation of backscattering by a melting layer of precipitation. Acta Physica Sinica, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [19] Monte Carlo simulation of Kα source produced by ultrashort and ultrahigh laser interaction with Cu target. Acta Physica Sinica, 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [20] Hao Fan-Hua, Hu Guang-Chun, Liu Su-Ping, Gong Jian, Xiang Yong-Chun, Huang Rui-Liang, Shi Xue-Ming, Wu Jun. Monte-Carlo method in calculating the γ spectrum of plutonium volume source. Acta Physica Sinica, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
Metrics
  • Abstract views:  6742
  • PDF Downloads:  730
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2017
  • Accepted Date:  16 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map