搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Huber的高阶容积卡尔曼跟踪算法

张文杰 王世元 冯亚丽 冯久超

引用本文:
Citation:

基于Huber的高阶容积卡尔曼跟踪算法

张文杰, 王世元, 冯亚丽, 冯久超

Huber-based high-degree cubature Kalman tracking algorithm

Zhang Wen-Jie, Wang Shi-Yuan, Feng Ya-Li, Feng Jiu-Chao
PDF
导出引用
  • 为改善高阶容积卡尔曼滤波算法的滤波精度和鲁棒性, 提出了一种新的基于Huber的高阶容积卡尔曼滤波算法. 在采用统计线性回归模型近似非线性量测模型的基础上, 利用Huber M 估计算法实现状态的量测更新. 进一步结合高阶球面-径向容积准则的状态预测模块构成基于 Huber的高阶容积卡尔曼跟踪算法. 重点分析了Huber代价函数的调节因子对算法跟踪性能的影响. 通过对纯方位目标跟踪和再入飞行器跟踪两个实例验证了所提算法的跟踪性能优于传统高阶容积卡尔曼滤波算法.
    In recent decades, nonlinear Kalman filtering based on Bayesian theory has been intensively studied to solve the problem of state estimation in nonlinear dynamical system. Under the Gaussian assumption, Bayesian filtering can provide a unified recursive solution to the estimation problem that is described as the calculation of Gaussian weighted integrals. However it is typically intractable to directly calculate these integrals. The numerical integration methods are required from a practical perspective. Therefore, nonlinear Kalman filters are generated by different numerical integrations. As a representative of nonlinear Kalman filter, cubature Kalman filter (CKF) utilizes a numerical rule based on the third-degree spherical-radial cubature rule to obtain better numerical stability, which is widely used in many fields, e.g., positioning, attitude estimation, and communication. Target tracking can be generalized as the estimations of the target position, the target velocity and other parameters. Hence, nonlinear Kalman filters can also be used to perform target tracking, effectively. Since the CKF based on the third-degree cubature rule has a limited accuracy of estimation, it is necessary to find a CKF based a cubature rule with higher accuracy in the case of target tracking system with a large uncertainty. High-degree cubature Kalman filter is therefore proposed to implement state estimation due to its higher numerical accuracy, which is preferred to solve the estimation problem existing in target tracking. To improve the filtering accuracy and robustness of high-degree cubature Kalman filter, in this paper we present a new filtering algorithm named Huber-based high-degree cubature Kalman filter (HHCKF) algorithm. After approximating nonlinear measurements by using the statistical linear regression model, the measurement update is implemented by the Huber M estimation. As a mixed estimation technique based on the minimum of l1-norm and l2-norm, the Huber estimator has high robustness and numerical accuracy under the assumption of Gaussian measurement noises. Therefore, the Huber-based high-degree cubature Kalman tracking algorithm is generated by combining the state prediction based on the fifth-degree spherical radial rule. In this paper, the influence of tuning parameter on the tracking performance is discussed by simulations. Simulations in the context of bearings only tracking and reentry vehicle tracking demonstrate that the new HHCKF can improve the tracking performance significantly.
      通信作者: 王世元, wsy@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61101232)、重庆市基础与前沿研究计划(批准号: cstc2014jcyjA40020)和中央高校基本科研业务费重点项目(批准号: XDJK2014B001)资助的课题.
      Corresponding author: Wang Shi-Yuan, wsy@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61101232), the Fundamental and Frontier Research Project of Chongqing, China (Grant No. cstc2014jcyjA40020), and the Fundamental Research Funds for Central Universities, China (Grant No. XDJK2014B001).
    [1]

    Pakki K, Chandra B, Gu D W 2011 Proc. of the American Control Conference USA, June 29-July 1, 2011 p3609

    [2]

    Gustafsson F, Hendeby G 2012 IEEE Trans. Signal Process. 60 545

    [3]

    Arasaratnam I, Haykin S, Elliott R J 2007 IEEE Proc. 95 953

    [4]

    Sheng Z, Chen J Q, Xu R H 2012 Acta Phys. Sin. 61 069301 (in Chinese) [盛峥, 陈加清, 徐如海 2012 61 069301]

    [5]

    Leung H, Zhu Z, Ding Z 2000 IEEE Trans. Signal Process. 48 1807

    [6]

    Julier S Y, Uhlmann J K 2004 IEEE Proc. 92 401

    [7]

    Hu G G, Gao S S, Zhong Y M, Gao B B 2015 Chin. Phys. B 24 070202

    [8]

    Arasaratnam I, Haykin S 2009 IEEE Trans. Autom. Control 54 1254

    [9]

    Zhang X C, Guo C J 2013 Chin. Phys. B 22 128401

    [10]

    Wang S Y, Feng J C, Tse C K 2014 IEEE Signal Process. Lett. 21 43

    [11]

    Jia B, Xin M, cheng Y 2013 Automatica 49 510

    [12]

    Zhang X C, Teng Y L 2015 Asian J. Control 17 1

    [13]

    Zhang X C 2014 Circ. Syst. Signal Process. 65 469

    [14]

    Huber P J 1964 Ann. Math. Stat. 35 73

    [15]

    Huber P J, Ronchetti E M 2009 Robust Statistics (Hoboken, New Jersey: John Wiley Sons, Inc.)

    [16]

    Petrus P 1999 IEEE Trans. Signal Process. 47 1129

    [17]

    Chang L, Hu B, Chang G, Li A 2012 IET Sci. Measur. Technol. 6 502

    [18]

    Karlgaard C D, Schaub H 2007 J. Guidance, Control, Dyn. 30 885

    [19]

    Wang X G, Cui N G, Guo J 2010 IET Radar, Sonar Navigation 4 134

    [20]

    Chang G B, Xu J N, Chang L B 2011 J. Nanjing Univ. Aeronaut. Astron. 43 754 (in Chinese) [常国宾, 许江宁, 常路宾 2011 南京航空航天大学学报 43 754]

    [21]

    Zhang Q, Qiao Y K, Kong X Y, Si X S 2014 Acta Phys. Sin. 63 110505 (in Chinese) [张琪, 乔玉坤, 孔祥玉, 司小胜 2014 63 110505]

    [22]

    Lu Z Y, Wang D M, Wang J H, Wang Y 2015 Acta Phys. Sin. 64 150502 (in Chinese) [逯志宇, 王大鸣, 王建辉, 王跃 2015 64 150502]

    [23]

    Karlgaard C D, Schaub H 2006 American Institute of Aeronautics and Astronautics, AIAA Paper 2006

    [24]

    Dunk J, Straka O, imandl M 2013 IEEE Trans. Autom. Cont. 58 1561

    [25]

    Bar-Shalom Y, Li X R, Kirubarajan T 2002 Estimation with Applications to Tracking and Navigation (New York: Williey Inter Science Press)

  • [1]

    Pakki K, Chandra B, Gu D W 2011 Proc. of the American Control Conference USA, June 29-July 1, 2011 p3609

    [2]

    Gustafsson F, Hendeby G 2012 IEEE Trans. Signal Process. 60 545

    [3]

    Arasaratnam I, Haykin S, Elliott R J 2007 IEEE Proc. 95 953

    [4]

    Sheng Z, Chen J Q, Xu R H 2012 Acta Phys. Sin. 61 069301 (in Chinese) [盛峥, 陈加清, 徐如海 2012 61 069301]

    [5]

    Leung H, Zhu Z, Ding Z 2000 IEEE Trans. Signal Process. 48 1807

    [6]

    Julier S Y, Uhlmann J K 2004 IEEE Proc. 92 401

    [7]

    Hu G G, Gao S S, Zhong Y M, Gao B B 2015 Chin. Phys. B 24 070202

    [8]

    Arasaratnam I, Haykin S 2009 IEEE Trans. Autom. Control 54 1254

    [9]

    Zhang X C, Guo C J 2013 Chin. Phys. B 22 128401

    [10]

    Wang S Y, Feng J C, Tse C K 2014 IEEE Signal Process. Lett. 21 43

    [11]

    Jia B, Xin M, cheng Y 2013 Automatica 49 510

    [12]

    Zhang X C, Teng Y L 2015 Asian J. Control 17 1

    [13]

    Zhang X C 2014 Circ. Syst. Signal Process. 65 469

    [14]

    Huber P J 1964 Ann. Math. Stat. 35 73

    [15]

    Huber P J, Ronchetti E M 2009 Robust Statistics (Hoboken, New Jersey: John Wiley Sons, Inc.)

    [16]

    Petrus P 1999 IEEE Trans. Signal Process. 47 1129

    [17]

    Chang L, Hu B, Chang G, Li A 2012 IET Sci. Measur. Technol. 6 502

    [18]

    Karlgaard C D, Schaub H 2007 J. Guidance, Control, Dyn. 30 885

    [19]

    Wang X G, Cui N G, Guo J 2010 IET Radar, Sonar Navigation 4 134

    [20]

    Chang G B, Xu J N, Chang L B 2011 J. Nanjing Univ. Aeronaut. Astron. 43 754 (in Chinese) [常国宾, 许江宁, 常路宾 2011 南京航空航天大学学报 43 754]

    [21]

    Zhang Q, Qiao Y K, Kong X Y, Si X S 2014 Acta Phys. Sin. 63 110505 (in Chinese) [张琪, 乔玉坤, 孔祥玉, 司小胜 2014 63 110505]

    [22]

    Lu Z Y, Wang D M, Wang J H, Wang Y 2015 Acta Phys. Sin. 64 150502 (in Chinese) [逯志宇, 王大鸣, 王建辉, 王跃 2015 64 150502]

    [23]

    Karlgaard C D, Schaub H 2006 American Institute of Aeronautics and Astronautics, AIAA Paper 2006

    [24]

    Dunk J, Straka O, imandl M 2013 IEEE Trans. Autom. Cont. 58 1561

    [25]

    Bar-Shalom Y, Li X R, Kirubarajan T 2002 Estimation with Applications to Tracking and Navigation (New York: Williey Inter Science Press)

  • [1] 周玉媛, 孙超, 谢磊. 基于轨迹泊松多伯努利混合滤波器的浅海匹配场连续跟踪方法.  , 2023, 72(18): 184301. doi: 10.7498/aps.72.20230124
    [2] 周大方, 张树林, 蒋式勤. 用于心脏电活动成像的空间滤波器输出噪声抑制方法.  , 2018, 67(15): 158702. doi: 10.7498/aps.67.20180294
    [3] 李兆铭, 杨文革, 丁丹, 廖育荣. 逼近积分点数下限的五阶容积卡尔曼滤波定轨算法.  , 2017, 66(15): 158401. doi: 10.7498/aps.66.158401
    [4] 陈典兵, 朱明, 高文, 王慧利, 杨航. 基于残差矩阵估计的稀疏表示目标跟踪算法.  , 2016, 65(19): 194201. doi: 10.7498/aps.65.194201
    [5] 胡进峰, 张亚璇, 李会勇, 杨淼, 夏威, 李军. 基于最优滤波器的强混沌背景中谐波信号检测方法研究.  , 2015, 64(22): 220504. doi: 10.7498/aps.64.220504
    [6] 李雄杰, 周东华. 一种基于强跟踪滤波的混沌保密通信方法.  , 2015, 64(14): 140501. doi: 10.7498/aps.64.140501
    [7] 吴昊, 陈树新, 杨宾峰, 陈坤. 基于广义M估计的鲁棒容积卡尔曼滤波目标跟踪算法.  , 2015, 64(21): 218401. doi: 10.7498/aps.64.218401
    [8] 高文, 汤洋, 朱明. 目标跟踪中目标模型更新问题的半监督学习算法研究.  , 2015, 64(1): 014205. doi: 10.7498/aps.64.014205
    [9] 逯志宇, 王大鸣, 王建辉, 王跃. 基于时频差的正交容积卡尔曼滤波跟踪算法.  , 2015, 64(15): 150502. doi: 10.7498/aps.64.150502
    [10] 姚振宁, 刘大明, 刘胜道, 朱兴乐. 基于不敏粒子滤波的水中非合作磁性目标实时磁定位方法.  , 2014, 63(22): 227502. doi: 10.7498/aps.63.227502
    [11] 张琪, 乔玉坤, 孔祥玉, 司小胜. 随机摄动强跟踪粒子滤波算法.  , 2014, 63(11): 110505. doi: 10.7498/aps.63.110505
    [12] 王保宪, 赵保军, 唐林波, 王水根, 吴京辉. 基于双向稀疏表示的鲁棒目标跟踪算法.  , 2014, 63(23): 234201. doi: 10.7498/aps.63.234201
    [13] 高文, 汤洋, 朱明. 复杂背景下目标检测的级联分类器算法研究.  , 2014, 63(9): 094204. doi: 10.7498/aps.63.094204
    [14] 马晓燠, 母杰, 饶长辉. 死区对四象限跟踪传感器跟踪精度的影响.  , 2012, 61(7): 072903. doi: 10.7498/aps.61.072903
    [15] 盛峥. 扩展卡尔曼滤波和不敏卡尔曼滤波在实时雷达回波反演大气波导中的应用.  , 2011, 60(11): 119301. doi: 10.7498/aps.60.119301
    [16] 宁小磊, 王宏力, 张琪, 陈连华. 区间衍生粒子滤波器.  , 2010, 59(7): 4426-4433. doi: 10.7498/aps.59.4426
    [17] 赵文山, 何怡刚. 一种改进的开关电流滤波器实现小波变换的方法.  , 2009, 58(2): 843-851. doi: 10.7498/aps.58.843
    [18] 杜正聪, 唐 斌, 李 可. 混合退火粒子滤波器.  , 2006, 55(3): 999-1004. doi: 10.7498/aps.55.999
    [19] 朱物华, 张仲桂. 频带滤波器之瞬流.  , 1937, 3(1): 39-50. doi: 10.7498/aps.3.39
    [20] 朱物华, 张仲桂. 低频滤波器之瞬流.  , 1936, 2(1): 76-105. doi: 10.7498/aps.2.76
计量
  • 文章访问数:  7929
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-16
  • 修回日期:  2016-01-05
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map