搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于足印探测的激光测高仪在轨标定

易洪 李松 马跃 黄科 周辉 史光远

引用本文:
Citation:

基于足印探测的激光测高仪在轨标定

易洪, 李松, 马跃, 黄科, 周辉, 史光远

On-orbit calibration of satellite laser altimeters based on footprint detection

Yi Hong, Li Song, Ma Yue, Huang Ke, Zhou Hui, Shi Guang-Yuan
PDF
导出引用
  • 高精度的地表目标三维观测结果需要卫星激光测高仪对其系统误差进行定期的在轨标定工作,这包含系统误差的估计和校正以及标定结果的精度检验,现有方式分别通过姿态机动法和足印探测法予以实现.然而,姿态机动方式不适用于我国的卫星平台,传统足印探测方式没有针对系统误差的估计模型,仅能用于标定结果的精度检验.本文推导了基于足印探测方式的激光指向角系统误差估计模型,使得足印探测法能完成包含在轨误差校正以及精度检验的工作闭环,同时对用于激光足印获取的地面能量探测器进行了改进设计.通过设计仿真实验对所推导的误差估计模型进行验证,并量化分析了探测器阵列激光入射角度、标定场地表粗糙度及探测器布设间距等因素对系统误差校正精度的影响.结果表明,若要实现1.8 m的水平定位精度(对应0.6 arcsec激光指向精度),探测器阵列间距达到20 m即可,探测器阵列面的入射角需高于3,标定场地表粗糙度需小于10 cm.以上结论对我国未来发射GF-7号光学/激光立体测绘卫星具有重要参考价值.
    The positioning accuracy of the footprint of a satellite laser altimeter is primarily dependent on the accuracy of its laser pointing, e.g., a 30 arcsec pointing bias will induce 87 m horizontal error and 1.5 m vertical error when the altitude is 600 km and the laser incident angle is 1. In order to achieve the three-dimensional high-precision observation on the Earth surface, on-orbit calibration is needed to remove the systematic pointing bias mainly arising from the thermal effect. The current methods of on-orbit calibration and verification for laser altimeters are the attitude maneuvering and the footprint detection, respectively. However, the attitude maneuvering is not applicable to the existing satellite platform of China, which uses the large platform with a three-axis attitude stabilization system. The current footprint detection method can only achieve on-orbit verification task, i.e., the horizontal and vertical errors can be evaluated by analyzing the captured laser footprints but the systematic pointing bias cannot be estimated and removed. An improved design scenario of energy detector that is used for capturing laser footprint is given in this paper. The quantification level of the captured laser energy is equal to 8, which is bigger than that of the energy detector designed for geoscience laser altimeter systems corresponding to level 2. Benefiting from the new design scenario, fewer detectors are needed to achieve the same precision when calculating the centroid geolocations of captured footprints. A new systematic misalignment estimation model in the laser direction cosines is deduced, and it is used to estimate the systematic bias by using the detected footprints based on the Gauss-Markoff criterion. With the new detectors and bias estimation model, the footprint detection method now can achieve on-orbit calibration, as well as on-orbit verification. According to the presented calculation model, simulation experiments are operated to analyse three effects that may influence the performance of the footprint detection on-orbit calibration, i.e., the laser incident angle on the detector array, the surface roughness of the site where detectors lay out, and the grid density of the detector array. The simulation results indicate that, when the horizontal positioning accuracy of the captured footprint centroid demands better than 1.8 m which corresponds to 0.6 arcsec laser pointing accuracy when the altitude of the satellite is 600 km, the grid distance of the detector array can be 20 m, the laser incident angle on the detector array should be larger than 3, and the surface roughness of the calibration site should be less than 0.1 m. The designed detectors and calibration method will be used to capture laser footprints and remove the systematic bias for the laser altimeter on China GF-7 satellite, which is one of the upcoming high-resolution satellites for Earth observation.
      通信作者: 李松, ls@whu.edu.cn
    • 基金项目: 对地高分辨率观测系统国家科技重大专项工程高分遥感测绘应用示范系统(一期)(批准号:AH1601-8)、国家自然科学基金(批准号:41506210,11574240)、测绘公益性行业科研专项经费资助项目(批准号:201512016)、中国博士后基金(批准号:2016M600612)和中央高校基本科研业务费专项资金(批准号:2015212020201)资助的课题.
      Corresponding author: Li Song, ls@whu.edu.cn
    • Funds: Project supported by National Science and Technology Major Project,China (Grant No.AH1601-8),National Science Foundation of China (Grant Nos.41506210,11574240),Public Science and Technology Research Funds Projects of Survey,China (Grant No.201512016),China Postdoctoral Science Foundation (Grant No.2016M500612),and the Foundmental Research Funds for the Central University of Ministry Education of China (Grant No.2015212020201).
    [1]

    Kou T, Wang H Y, Wang F, Wu X M, Wang L, Xu Q 2015 Acta Phys. Sin. 64 120601 (in Chinese)[寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强 2015 64 120601]

    [2]

    Schutz B E 2002 GLAS Algorithm Theoretical Basis Document:Laser Footprint Location (geolocation) and Surface Profiles (Austin:The University of Texas at Austin) p11

    [3]

    Rim H J, Schutz B E 2002 GLAS Algorithm Theoretical Basis Document:Precision Orbit Determination (POD) (Austin:The University of Texas at Austin) p1

    [4]

    Ma Y, Yang F L, Yi H, Li S 2015 Infrar. Laser Eng. 44 2401 (in Chinese)[马跃, 阳凡林, 易洪, 李松 2015 红外与激光工程 44 2401]

    [5]

    Ma Y, Li S, Zhou H, Yi H 2013 Opt. Precision Eng. 21 813 (in Chinese)[马跃, 李松, 周辉, 易洪 2013 光学精密工程 21 813]

    [6]

    Filin S 2001 Ph.D. Dissertation (Austin:The Ohio State University)

    [7]

    Luthcke S B, Rowlands D D, McCarthy J J, Pavlis D D, Stoneking E 2000 J. Spacecraft Rockets 37 374

    [8]

    Schutz B E 2001 GLAS Altimeter Post-Launch Calibration/Validation Plan (Austin:The University of Texas at Austin) p1

    [9]

    Yi H, Li S, Weng Y K, Ma Y 2016 J. Huazhong Univ. Sci. Tec. (Nature Science Edition) 44 58 (in Chinese)[易洪, 李松, 翁寅侃, 马跃 2016 华中科技大学学报(自然科学版) 44 58]

    [10]

    Magruder L A, Schutz B E, Silverberg E C 2003 J. Geodesy. 77 148

    [11]

    Magruder L, Silverberg E, Webb C, Schutz B E 2005 Geophys. Res. Lett. 32 1

    [12]

    Magruder L A, Webb C E, Urban T J, Silverberg E C, Schutz B E 2007 IEEE Trans. Geosci. Remote. 45 147

    [13]

    Jiang Y, Zhang G, Tang X, Li D 2014 IEEE Trans. Geosci. Remote. 52 7674

    [14]

    Lisano M E, Schutz B E 2001 J. Geodesy. 75 99

    [15]

    Magruder L A 2001 Ph. D. Dissertation (Austin:The Ohio State University)

    [16]

    Yue M, Song L, Hong Y, Xiu S L, Zhou H, Ting W C 2016 Photogramm. Eng. Rem. S. 82 847

    [17]

    Li G Y, Tang X M, Chen J Y, Gao X M, Dou X H 2016 Seminar on Novel Optoelectronic Detection Technology and Application Xi'an, China, November 16-18, 2016 p1 (in Chinese)[李国元, 唐新明, 陈继溢, 高小明, 窦显辉 2016 新型光电探测技术及其应用研讨会]

  • [1]

    Kou T, Wang H Y, Wang F, Wu X M, Wang L, Xu Q 2015 Acta Phys. Sin. 64 120601 (in Chinese)[寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强 2015 64 120601]

    [2]

    Schutz B E 2002 GLAS Algorithm Theoretical Basis Document:Laser Footprint Location (geolocation) and Surface Profiles (Austin:The University of Texas at Austin) p11

    [3]

    Rim H J, Schutz B E 2002 GLAS Algorithm Theoretical Basis Document:Precision Orbit Determination (POD) (Austin:The University of Texas at Austin) p1

    [4]

    Ma Y, Yang F L, Yi H, Li S 2015 Infrar. Laser Eng. 44 2401 (in Chinese)[马跃, 阳凡林, 易洪, 李松 2015 红外与激光工程 44 2401]

    [5]

    Ma Y, Li S, Zhou H, Yi H 2013 Opt. Precision Eng. 21 813 (in Chinese)[马跃, 李松, 周辉, 易洪 2013 光学精密工程 21 813]

    [6]

    Filin S 2001 Ph.D. Dissertation (Austin:The Ohio State University)

    [7]

    Luthcke S B, Rowlands D D, McCarthy J J, Pavlis D D, Stoneking E 2000 J. Spacecraft Rockets 37 374

    [8]

    Schutz B E 2001 GLAS Altimeter Post-Launch Calibration/Validation Plan (Austin:The University of Texas at Austin) p1

    [9]

    Yi H, Li S, Weng Y K, Ma Y 2016 J. Huazhong Univ. Sci. Tec. (Nature Science Edition) 44 58 (in Chinese)[易洪, 李松, 翁寅侃, 马跃 2016 华中科技大学学报(自然科学版) 44 58]

    [10]

    Magruder L A, Schutz B E, Silverberg E C 2003 J. Geodesy. 77 148

    [11]

    Magruder L, Silverberg E, Webb C, Schutz B E 2005 Geophys. Res. Lett. 32 1

    [12]

    Magruder L A, Webb C E, Urban T J, Silverberg E C, Schutz B E 2007 IEEE Trans. Geosci. Remote. 45 147

    [13]

    Jiang Y, Zhang G, Tang X, Li D 2014 IEEE Trans. Geosci. Remote. 52 7674

    [14]

    Lisano M E, Schutz B E 2001 J. Geodesy. 75 99

    [15]

    Magruder L A 2001 Ph. D. Dissertation (Austin:The Ohio State University)

    [16]

    Yue M, Song L, Hong Y, Xiu S L, Zhou H, Ting W C 2016 Photogramm. Eng. Rem. S. 82 847

    [17]

    Li G Y, Tang X M, Chen J Y, Gao X M, Dou X H 2016 Seminar on Novel Optoelectronic Detection Technology and Application Xi'an, China, November 16-18, 2016 p1 (in Chinese)[李国元, 唐新明, 陈继溢, 高小明, 窦显辉 2016 新型光电探测技术及其应用研讨会]

  • [1] 郑昊哲, 刘圆圆, 王力, 程建平. 液氩探测器在稀有事例探测中的应用和发展.  , 2023, 72(5): 052901. doi: 10.7498/aps.72.20222055
    [2] 蔡荣根, 李理, 王少江. 哈勃常数危机.  , 2023, 72(23): 239801. doi: 10.7498/aps.72.20231270
    [3] 蒋伟, 江浩雨, 易晗, 樊瑞睿, 崔增琪, 孙康, 张国辉, 唐靖宇, 孙志嘉, 宁常军, 高可庆, 安琪, 白怀勇, 鲍杰, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈永浩, 陈裕凯, 陈朕, 封常青, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 栾广源, 穆奇丽, 齐斌斌, 任杰, 任智洲, 阮锡超, 宋朝晖, 宋英鹏, 孙虹, 孙晓阳, 谭志新, 唐洪庆, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 王朝辉, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 于莉, 余滔, 于永积, 张林浩, 张奇玮, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, CSNS Back-n合作组 . 基于反角白光中子源次级质子的探测器标定.  , 2021, 70(8): 082901. doi: 10.7498/aps.70.20201823
    [4] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 固定相位振动噪声对绝对重力测量的影响.  , 2021, 70(21): 219101. doi: 10.7498/aps.70.20210884
    [5] 赵磊, 徐妙华, 张翌航, 张喆, 朱保君, 姜炜曼, 张笑鹏, 赵旭, 仝博伟, 贺书凯, 卢峰, 吴玉迟, 周维民, 张发强, 周凯南, 谢娜, 黄征, 仲佳勇, 谷渝秋, 李玉同, 李英骏. 利用气泡探测器测量激光快中子.  , 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [6] 周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰. 一种聚焦型X射线探测器在轨性能标定方法.  , 2018, 67(5): 050701. doi: 10.7498/aps.67.20172352
    [7] 钱鸿鹄, 孟炳寰, 袁银麟, 洪津, 张苗苗, 李双, 裘桢炜. 星载多角度偏振成像仪非偏通道全视场偏振效应测量及误差分析.  , 2017, 66(10): 100701. doi: 10.7498/aps.66.100701
    [8] 刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰. 考虑探测器特性的光电偏振成像系统偏振信息重构方法.  , 2016, 65(9): 094201. doi: 10.7498/aps.65.094201
    [9] 代锦飞, 赵宝升, 盛立志, 周雁楠, 陈琛, 宋娟, 刘永安, 李林森. 标定脉冲星导航探测器的荧光X射线光源.  , 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [10] 张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然. 星载激光多普勒测风雷达鉴频系统仿真(I):基于Fizeau干涉仪的Mie通道大气风速反演研究.  , 2014, 63(14): 140702. doi: 10.7498/aps.63.140702
    [11] 周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶. 量子点红外探测器在空间光电系统中的应用.  , 2014, 63(14): 148501. doi: 10.7498/aps.63.148501
    [12] 江天, 程湘爱, 许中杰, 陆启生. 光伏型碲镉汞探测器在波段内连续激光辐照下的两种不同过饱和现象的产生机理.  , 2013, 62(9): 097303. doi: 10.7498/aps.62.097303
    [13] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究.  , 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [14] 江天, 程湘爱, 郑鑫, 许中杰, 江厚满, 陆启生. 光伏碲镉汞探测器在波段内连续激光辐照下的非线性响应机理研究.  , 2012, 61(13): 137302. doi: 10.7498/aps.61.137302
    [15] 徐丰, 陆明珠, 万明习, 方飞. 256阵元高强度聚焦超声相控阵系统误差与多焦点模式精确控制.  , 2010, 59(2): 1349-1356. doi: 10.7498/aps.59.1349
    [16] 李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏. 硅陷阱探测器在350—1064 nm波段的绝对光谱响应度定标.  , 2009, 58(9): 6273-6278. doi: 10.7498/aps.58.6273
    [17] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用.  , 2008, 57(2): 678-684. doi: 10.7498/aps.57.678
    [18] 孙景文. X射线探测器的脉冲标定技术.  , 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
    [19] 杨金刚, 李卫江, 郭清江, 朱光华, 姜承烈. 带有磁分析器的半导体探测器带电粒子谱仪.  , 1974, 23(1): 52-62. doi: 10.7498/aps.23.52
    [20] А.Ф.杜纳耶切夫, Ю.Д.布罗高舒金, 唐孝威. π-介子星裂探测器.  , 1960, 16(8): 471-478. doi: 10.7498/aps.16.471
计量
  • 文章访问数:  5568
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-08
  • 修回日期:  2017-05-04
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map