搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光脉冲能量累积优化对黑硅表面形貌的影响

陶海岩 陈锐 宋晓伟 陈亚楠 林景全

引用本文:
Citation:

飞秒激光脉冲能量累积优化对黑硅表面形貌的影响

陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全

Femtosecond laser pulse energy accumulation optimization effect on surface morphology of black silicon

Tao Hai-Yan, Chen Rui, Song Xiao-Wei, Chen Ya-Nan, Lin Jing-Quan
PDF
导出引用
  • 在黑硅表面制备的微结构可以使其获得多种表面功能,这些功能在太阳能、探测器等领域具有广泛的应用.因此,黑硅微结构的形成机理及制备条件优化一直是研究关注的焦点.本文的研究发现,随着激光辐照量(提高单脉冲能量或增加积累脉冲数)的增加会遇到形貌尺寸生长的瓶颈效应:过多的能量累积对微结构的优化和控制并没有进一步的作用.理论计算结果表明,产生这一现象的原因是前序飞秒激光脉冲诱导产生的微结构形貌对当前激光脉冲能量的吸收产生了调制,使当前激光脉冲的有效烧蚀效率降低.根据这一飞秒激光烧蚀规律,提出了一种优化表面形貌的新方案在辐照激光总能量一定的条件下,通过改变激光能量的分配方式(单脉冲能量与脉冲数的组合)可实现表面形貌的优化.这一新的工作方式不但可以提高黑硅的制备效率,而且还有助于减少飞秒加工过程带来的表面缺陷及损伤,并降低加工过程中的能源消耗.这一研究成果对黑硅性能的进一步提升及其工程应用具有重要的意义.
    Arrays of sharp conical spike microstructures are created by repeatedly irradiating silicon surfaces with focused femtosecond laser pulses in SF6. The absorbance of light is increased to approximately 90% in a wavelength range from the near ultraviolet (0.25 m) to the near infrared (2.5 m) by the microstructured silicon surface. The microstructured surface presents pitch-black because of enhanced absorption with a broad wavelength range, which is called black silicon. The unique microstructure morphology of black silicon surface formed by femtosecond laser can also bring a lot of other surface functions, for example, self-cleaning and field emission. These functions make black silicon highly desirable in solar energy, detectors and other fields. Therefore, the forming mechanism and conditions of fabrication optimization for black silicon microstructure have always been the focus of research. In our work, the sample is moved by motor-controlled stage while the laser beam is fixed. In the case of laser beam scanning, arrays of sharp conical spikes on the silicon are manufactured in 70 kPa SF6. The aim of the experiment is to find how to optimize the distribution of the laser energy in a number of laser accumulation pulses (the combination of single pulse energy and pulse number) to control the surface morphology of the black silicon. Experimental results show that there appears a bottleneck effect of morphology size growth with the increase of laser irradiation (improving the single pulse energy or increasing pulse accumulation number). Excessive energy accumulation brings no extra effect on optimizing and controlling of microstructure morphology on the surface. Based on theoretical results obtained from a physical model we proposed, we find that the reason for this phenomenon is that the microstructure morphology induced by former sequence pulse modulates the laser energy absorption of current laser pulse, and changes the laser ablation efficiency of the current pulse. According to this physical mechanism, we propose a new way of optimizing surface morphology, with fixing the total laser irradiation energy. And the size and distribution of surface morphology can be achieved by optimizing the distribution of the laser energy in a number of laser accumulation pulses. This approach can not only improve the efficiency of silicon surface preparation of microstructures but also reduce the surface defects and damage. Furthermore, the proposed method can reduce the energy consumption in the process of femtosecond machining. It is of great significance for the engineering application of black silicon.
      通信作者: 林景全, linjingquan@cust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61605017)、长春市科技计划(批准号:14KP007)、长春理工大学青年科学基金(批准号:XQNJJ-2015-01)和光电信息控制和安全技术重点实验室基金资助的课题.
      Corresponding author: Lin Jing-Quan, linjingquan@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61605017), the Science and Technology Planning Project of Changchun, China (Grant No. 14KP007), the Young Scientists Fund of Changchun University of Science and Technology, China (Grant No. XQNJJ-2015-01), and the Foundation of the Science and Technology on Electro-Optical Information Security Control Laboratory, China.
    [1]

    Wu C, Crouch C H, Zhao L, Carey J E, Younkin R, Levinson J A, Mazur E, Farrell R M, Gothoskar P, Karger A 2001 Appl. Phys. Lett. 78 1850

    [2]

    Peng Y, Chen X Q, Zhou Y Y, Xu G J, Cai B, Zhu Y M, Xu J, Henderson R, Dai J M 2014 J. Appl. Phys. 116 073102

    [3]

    Baldacchini T, Carey J E, Zhou M, Mazur E 2006 Langmuir 22 4917

    [4]

    Tao H, Lin J, Hao Z, Gao X, Song X, Sun C, Tan X 2012 Appl. Phys. Lett. 100 201111

    [5]

    Tao H, Song X, Hao Z, Lin J 2015 Chin. Opt. Lett. 13 061402

    [6]

    Maloney P G, Smith P, King V, Billman C, Winkler M, Mazur E 2010 Appl. Opt. 49 1065

    [7]

    Her T H, Finlay R J, Wu C, Mazur E 2000 Appl. Phys. A 70 383

    [8]

    Peng Y, Zhang D S, Chen H Y, Wen Y, Luo S D, Chen L, Chen K J, Zhu Y M 2012 Appl. Opt. 51 635

    [9]

    Yang H D, Li X H, Li G Q, Yuan C H, Tang D C, Xu Q, Qiu R, Wang J P 2011 Acta Phys. Sin. 60 027901 (in Chinese) [杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波 2011 027901]

    [10]

    Crouch C H, Carey J E, Warrender J M, Aziz M J, Mazur E, Genin F Y 2004 Appl. Phys. Lett. 84 1850

    [11]

    Peng Y, Hong M, Zhou Y Y, Fang D, Chen X Q, Cai B, Zhu Y M 2013 Appl. Phys. Express 6 051303

    [12]

    Younkin R, Carey J E, Mazur E, Levinson J A, Friend C M 2003 J. Appl. Phys. 93 2626

    [13]

    Dong X, Li N, Liang C, Sun H, Feng G J, Zhu Z, Shao H Z, Rong X M, Zhao L, Zhuang J 2013 Appl. Phys. Express 6 081301

    [14]

    Peng Y, Wen Y, Zhang D S, Luo S D, Chen L, Zhu L M 2011 Appl. Opt. 50 4765

    [15]

    Yang J, Luo F F, Kao T S, Li X, Ho G W, Teng J H, Luo X G, Hong M H 2014 Light: Sci. Appl. 3 e185

    [16]

    Conde J C, Gonzlez P, Lusquios F, Len B 2009 Appl. Phys. A 95 465

    [17]

    Ward L 1994 The Optical Constants of Bulk Materials and Films (2nd Ed.) (London: Institute of Physics)

  • [1]

    Wu C, Crouch C H, Zhao L, Carey J E, Younkin R, Levinson J A, Mazur E, Farrell R M, Gothoskar P, Karger A 2001 Appl. Phys. Lett. 78 1850

    [2]

    Peng Y, Chen X Q, Zhou Y Y, Xu G J, Cai B, Zhu Y M, Xu J, Henderson R, Dai J M 2014 J. Appl. Phys. 116 073102

    [3]

    Baldacchini T, Carey J E, Zhou M, Mazur E 2006 Langmuir 22 4917

    [4]

    Tao H, Lin J, Hao Z, Gao X, Song X, Sun C, Tan X 2012 Appl. Phys. Lett. 100 201111

    [5]

    Tao H, Song X, Hao Z, Lin J 2015 Chin. Opt. Lett. 13 061402

    [6]

    Maloney P G, Smith P, King V, Billman C, Winkler M, Mazur E 2010 Appl. Opt. 49 1065

    [7]

    Her T H, Finlay R J, Wu C, Mazur E 2000 Appl. Phys. A 70 383

    [8]

    Peng Y, Zhang D S, Chen H Y, Wen Y, Luo S D, Chen L, Chen K J, Zhu Y M 2012 Appl. Opt. 51 635

    [9]

    Yang H D, Li X H, Li G Q, Yuan C H, Tang D C, Xu Q, Qiu R, Wang J P 2011 Acta Phys. Sin. 60 027901 (in Chinese) [杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波 2011 027901]

    [10]

    Crouch C H, Carey J E, Warrender J M, Aziz M J, Mazur E, Genin F Y 2004 Appl. Phys. Lett. 84 1850

    [11]

    Peng Y, Hong M, Zhou Y Y, Fang D, Chen X Q, Cai B, Zhu Y M 2013 Appl. Phys. Express 6 051303

    [12]

    Younkin R, Carey J E, Mazur E, Levinson J A, Friend C M 2003 J. Appl. Phys. 93 2626

    [13]

    Dong X, Li N, Liang C, Sun H, Feng G J, Zhu Z, Shao H Z, Rong X M, Zhao L, Zhuang J 2013 Appl. Phys. Express 6 081301

    [14]

    Peng Y, Wen Y, Zhang D S, Luo S D, Chen L, Zhu L M 2011 Appl. Opt. 50 4765

    [15]

    Yang J, Luo F F, Kao T S, Li X, Ho G W, Teng J H, Luo X G, Hong M H 2014 Light: Sci. Appl. 3 e185

    [16]

    Conde J C, Gonzlez P, Lusquios F, Len B 2009 Appl. Phys. A 95 465

    [17]

    Ward L 1994 The Optical Constants of Bulk Materials and Films (2nd Ed.) (London: Institute of Physics)

  • [1] 陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳. 磁场辅助激光生长类金刚石膜的微结构及光学性能.  , 2024, 73(10): 108101. doi: 10.7498/aps.73.20240145
    [2] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制.  , 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [3] 焦悦, 陶海岩, 季博宇, 宋晓伟, 林景全. 用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强.  , 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [4] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [5] 潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发. F8BT薄膜表面形貌及与Al形成界面的电子结构和反应.  , 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [6] 高仁喜, 高胜英, 范光华, 刘杰, 王强, 赵海峰, 曲士良. 飞秒激光改性6H-碳化硅晶体表面光电导增益现象研究.  , 2014, 63(6): 067801. doi: 10.7498/aps.63.067801
    [7] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究.  , 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [8] 彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿. 飞秒激光诱导自组织纳米周期结构及其光学特性的研究进展.  , 2013, 62(9): 094201. doi: 10.7498/aps.62.094201
    [9] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究.  , 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [10] 刘杰, 刘邦武, 夏洋, 李超波, 刘肃. 等离子体浸没离子注入制备黑硅抗反射层及其光学特性研究.  , 2012, 61(14): 148102. doi: 10.7498/aps.61.148102
    [11] 彭述明, 申华海, 龙兴贵, 周晓松, 杨莉, 祖小涛. 氘化及氦离子注入对钪膜的表面形貌和相结构的影响.  , 2012, 61(17): 176106. doi: 10.7498/aps.61.176106
    [12] 李保家, 周明, 张伟. 贴膜条件下飞秒激光诱导硅基表面锥状微结构.  , 2012, 61(23): 237901. doi: 10.7498/aps.61.237901
    [13] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [14] 熊平新, 贾鑫, 贾天卿, 邓莉, 冯东海, 孙真荣, 徐至展. 三光束飞秒激光干涉在GaP,ZnSe表面诱导二维复合纳米-微米周期结构.  , 2010, 59(1): 311-316. doi: 10.7498/aps.59.311
    [15] 刘光友, 谭兴文, 姚金才, 王 振, 熊祖洪. 电化学制备薄黑硅抗反射膜.  , 2008, 57(1): 514-518. doi: 10.7498/aps.57.514
    [16] 余本海, 戴能利, 王 英, 李玉华, 季玲玲, 郑启光, 陆培祥. 飞秒激光烧蚀LiNbO3晶体的形貌特征与机理研究.  , 2007, 56(10): 5821-5826. doi: 10.7498/aps.56.5821
    [17] 黄 锐, 林璇英, 余云鹏, 林揆训, 祝祖送, 魏俊红. 氢稀释对多晶硅薄膜结构特性和光学特性的影响.  , 2006, 55(5): 2523-2528. doi: 10.7498/aps.55.2523
    [18] 刘小兵, 史向华, 廖太长, 任 鹏, 柳 玥, 柳 毅, 熊祖洪, 丁训民, 侯晓远. 声空化物理化学综合法制备发光多孔硅薄膜的微结构与发光特性.  , 2005, 54(1): 416-421. doi: 10.7498/aps.54.416
    [19] 周炳卿, 刘丰珍, 朱美芳, 谷锦华, 周玉琴, 刘金龙, 董宝中, 李国华, 丁 琨. 利用x射线小角散射技术研究微晶硅薄膜的微结构.  , 2005, 54(5): 2172-2175. doi: 10.7498/aps.54.2172
    [20] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响.  , 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
计量
  • 文章访问数:  6693
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-19
  • 修回日期:  2016-11-30
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map