-
Based on the review of previous experimental and theoretical studies on the surface processing by a pulsed intense electron beam, the induced temperature field in aluminum and 304 stainless steel is simulated by the finite element method (FEM) to estimate the existing time and depth of molten metal flow field on the irradiated surface. The generation of craters is attributed to the thermal resistance formed by the grain boundaries, and the influence of material properties on the mechanism of crater evolution is also discussed. Two-phase flow field simulation on molten metal is carried out with a combination of level-set method and FEM to estimate the mass transfer behavior at the craters and surface protuberance. It is revealed that the mass transfer effect driven by surface tension is an important factor for the formation and evolution of round-shaped craters on the surface of metals with high melting point, viscosity and surface tension coefficient. However, for metals with low melting point, due to the strong disturbance by ablating gas plume and low surface tension effect, the craters are more likely to have irregular splashing edges.
-
Keywords:
- intense pulsed electron beam /
- surface morphology /
- flow field /
- surface tension
[1] Proskurovsky D I, Rotshtein V P, Ozur G E, Ivanov Yu F, Markov A B 2000 Surf. Coat. Technol. 125 49
[2] Dong C, Wu A, Hao S, Zou J, Liu Z, Zhong P, Zhang A, Xu T, Chen J, Xu J, Liu Q 2003 Surf. Coat. Technol. 163 620
[3] Proskurovsky D I, Rotshtein V P, Ozur G E, Markov A B, Nazarov D S, Shulov V A, Ivanov Yu F, Buchheit R G 1998 J. Vac. Sci Technol. A 16 2480
[4] Shulov V A, Nochovnaya N A 1999 Nucl. Instrum. Meth. B 148 154
[5] Wood B P, Perry A J, Bitteker L J, Waganaar W J 1998 Surf. Coat. Technol. 108-109 171
[6] Yan S, Le X Y, Zhao W J, Xue J M, Wang Y G 2005 Surf. Coat. Technol. 193 69
[7] Pogrebnjak A D, Bratushka S, Boyko V I, Shamanin I V, Tsvintarnaya Yu V 1998 Nucl. Instrum. Meth. B 145 373
[8] Pogrebnjak A D, Mikhailov A D, Pogrebnjak N A, Tsvintarnaya Yu V, Laverntiev V I, Iljashenko M, Valyaev A N, Bratushka S, Zecca A, Sandrik R 1998 Phys. Lett. A 241 357
[9] Qin Y, Zou J, Dong C, Wang X, Wu A, Liu Y, Hao S, Guan Q 2004 Nucl. Instrum. Meth. B 225 544
[10] Grosdidier T, Zou J X, Stein N, Boulanger C, Hao S Z, Dong C 2008 Scripta. Mater. 58 1061
[11] Hao S, Yao S, Guan J, Wu A, Zhong P, Dong C 2001 Curr. Appl. Phys. 1 203
[12] Fetzer R, Mueller G, An W, Weisenburger A 2014 Surf. Coat. Technol. 258 549
[13] Zhang K., Zou J, Grosdidier T, Dong C, Yang D 2006 Surf. Coat Technol. 201 1393
[14] Cheng D Q, Guan Q F, Zhu J, Qiu D H, Cheng X W 2009 Acta Phys. Sin. 58 7300 (in Chinese) [程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛 2009 58 7300]
[15] Li Y, Cai J, Lv P, Zou Y, Wan M Z, Peng D J, Gu Q Q, Guan Q F 2012 Acta Phys. Sin. 61 56105 (in Chinese) [李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰 2012 61 56105]
[16] Ji L, Yang S Z, Cai J, Li Y, Wang X T, Zhang Z Q, Hou X L, Guan Q F 2013 Acta Phys. Sin. 62 236103 (in Chinese) [季乐, 杨盛志, 蔡杰, 李艳, 王晓彤, 张在强, 侯秀丽, 关庆丰 2013 62 236103]
[17] Gao Y, Qin Y, Dong C, Li G 2014 Appl. Surf. Sci. 311 413
[18] Su Y, Li G, Niu L, Yang S, Cai J, Guan Q 2015 J. Nanomater. 501 876539
[19] Hao S, Gao B, Wu A, Zou J, Qin Y, Dong C, An J, Guan Q 2005 Nucl. Instrum. Meth. B 240 646
[20] Gao B, Hao S, Zou J, Wu W, Tu G, Dong C 2007 Surf. Coat. Technol. 201 6297
[21] Sussman M, Smereka P, Osher S 1994 J. Comput. Phys. 114 146
-
[1] Proskurovsky D I, Rotshtein V P, Ozur G E, Ivanov Yu F, Markov A B 2000 Surf. Coat. Technol. 125 49
[2] Dong C, Wu A, Hao S, Zou J, Liu Z, Zhong P, Zhang A, Xu T, Chen J, Xu J, Liu Q 2003 Surf. Coat. Technol. 163 620
[3] Proskurovsky D I, Rotshtein V P, Ozur G E, Markov A B, Nazarov D S, Shulov V A, Ivanov Yu F, Buchheit R G 1998 J. Vac. Sci Technol. A 16 2480
[4] Shulov V A, Nochovnaya N A 1999 Nucl. Instrum. Meth. B 148 154
[5] Wood B P, Perry A J, Bitteker L J, Waganaar W J 1998 Surf. Coat. Technol. 108-109 171
[6] Yan S, Le X Y, Zhao W J, Xue J M, Wang Y G 2005 Surf. Coat. Technol. 193 69
[7] Pogrebnjak A D, Bratushka S, Boyko V I, Shamanin I V, Tsvintarnaya Yu V 1998 Nucl. Instrum. Meth. B 145 373
[8] Pogrebnjak A D, Mikhailov A D, Pogrebnjak N A, Tsvintarnaya Yu V, Laverntiev V I, Iljashenko M, Valyaev A N, Bratushka S, Zecca A, Sandrik R 1998 Phys. Lett. A 241 357
[9] Qin Y, Zou J, Dong C, Wang X, Wu A, Liu Y, Hao S, Guan Q 2004 Nucl. Instrum. Meth. B 225 544
[10] Grosdidier T, Zou J X, Stein N, Boulanger C, Hao S Z, Dong C 2008 Scripta. Mater. 58 1061
[11] Hao S, Yao S, Guan J, Wu A, Zhong P, Dong C 2001 Curr. Appl. Phys. 1 203
[12] Fetzer R, Mueller G, An W, Weisenburger A 2014 Surf. Coat. Technol. 258 549
[13] Zhang K., Zou J, Grosdidier T, Dong C, Yang D 2006 Surf. Coat Technol. 201 1393
[14] Cheng D Q, Guan Q F, Zhu J, Qiu D H, Cheng X W 2009 Acta Phys. Sin. 58 7300 (in Chinese) [程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛 2009 58 7300]
[15] Li Y, Cai J, Lv P, Zou Y, Wan M Z, Peng D J, Gu Q Q, Guan Q F 2012 Acta Phys. Sin. 61 56105 (in Chinese) [李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰 2012 61 56105]
[16] Ji L, Yang S Z, Cai J, Li Y, Wang X T, Zhang Z Q, Hou X L, Guan Q F 2013 Acta Phys. Sin. 62 236103 (in Chinese) [季乐, 杨盛志, 蔡杰, 李艳, 王晓彤, 张在强, 侯秀丽, 关庆丰 2013 62 236103]
[17] Gao Y, Qin Y, Dong C, Li G 2014 Appl. Surf. Sci. 311 413
[18] Su Y, Li G, Niu L, Yang S, Cai J, Guan Q 2015 J. Nanomater. 501 876539
[19] Hao S, Gao B, Wu A, Zou J, Qin Y, Dong C, An J, Guan Q 2005 Nucl. Instrum. Meth. B 240 646
[20] Gao B, Hao S, Zou J, Wu W, Tu G, Dong C 2007 Surf. Coat. Technol. 201 6297
[21] Sussman M, Smereka P, Osher S 1994 J. Comput. Phys. 114 146
计量
- 文章访问数: 5683
- PDF下载量: 227
- 被引次数: 0