Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A collisional-radiative model for lithium impurity in plasma boundary region of Experimental Advanced Superconducting Tokamak

Zhang Tai-Yang Chen Ran

Citation:

A collisional-radiative model for lithium impurity in plasma boundary region of Experimental Advanced Superconducting Tokamak

Zhang Tai-Yang, Chen Ran
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A green emission layer caused by lithium impurity is universally observed in plasma boundary region of Experimental Advanced Superconducting Tokamak (EAST) via a visible-light camera, where lithium coating is normally adopted as a routine technique of wall conditioning. In this article, in order to estimate the spatial distribution of green light intensity of this emission layer according to the given real parameter distributions of edge plasmas, a practicable method is proposed based on a collisional-radiative model. In this model, a finite number of energy levels of lithium are taken into account, and proper simplifications of convection-diffusion equations are made according to the order-of-magnitude analysis. We process the atomic data collected from the OPEN-ADAS database, and develop a corresponding program in Mathematica 10.4.1 to solve the simplified one-dimensional problem numerically. Estimation results are obtained respectively for the two sets of edge plasma profiles of EAST in L-mode and H-mode regimes, and both clearly show a good unimodal structure of the spatial distribution of green light intensity of this emission layer. These analyses actually provide the spatial distributions of lithium impurities at different energy levels, not only indicating the spatial distribution of the intensity of this emission layer induced by lithium impurity but also revealing the physical processes that lithium experiences in edge plasma. There are some different and common characteristics in the spatial distribution of the intensity of this emission layer in these two important cases. This emission layer is kept outside the last closed magnetic surface in both cases while it becomes thinner with a higher intensity peak in H-mode case. Besides, the sensitivity of this algorithm to the measurement error of edge plasma profile is also explored in this work. It is found that the relative errors of the numerical results obtained by our proposed method are comparable to those of edge plasma profiles. This work provides important theoretical references for developing a new practical technique of fast reconstructing edge plasma configurations in EAST based on the emission of lithium impurity, and may further contribute a lot to the studies of edge plasma behaviors when three-dimensional perturbation fields are adopted.
      Corresponding author: Chen Ran, chenran@ipp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675220).
    [1]

    ITER Physics Expert Groups on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175

    [2]

    Sun Y, Liang Y F, Qian J P, Shen B, Wan B 2015 Plasma Phys. Control. Fusion 57 045003

    [3]

    Zuo G Z, Hu J S, Li J G, Luo N C, Hu L Q, Fu J, Chen K Y, Ti A, Zhang L L 2010 Plasma Sci. Technol. 12 646

    [4]

    Xu J C, Wang F D, L B, Shen Y C, Li Y Y, Fu J, Shi Y J 2012 Acta Phys. Sin. 61 145203 (in Chinese) [徐经翠, 王福地, 吕波, 沈永才, 李颖颖, 符佳, 石跃江 2012 61 145203]

    [5]

    Wnderlich D, Dietrich S, Fantz U 2009 J. Quant. Spectrosc. Radiat. Transfer 110 62

    [6]

    Goto M 2003 J. Quant. Spectrosc. Radiat. Transfer 76 331

    [7]

    Yu Y Q, Xin Y, Ning Z Y 2011 Chin. Phys. B 20 015207

    [8]

    Peng F, Jiang G, Zhu Z H 2006 Chin. Phys. Lett. 23 3245

    [9]

    Wang J, Zhang H, Cheng X L 2013 Chin. Phys. B 22 085201

    [10]

    Xie H Q, Tan Y, Liu Y Q, Wang W H, Gao Z 2014 Acta Phys. Sin. 63 125203 (in Chinese) [谢会乔, 谭熠, 刘阳青, 王文浩, 高喆 2014 63 125203]

    [11]

    Goto M, Fujimoto T 1997 Fusion Eng. Des. 34 759

    [12]

    van der Sijde B, van der Mullen J J A M, Schram D C 1984 Beitr. Plasmaphys. 24 447

    [13]

    Summers H P, Dickson W J, O'Mullane M G, Badnell N R, Whiteford A D, Brooks D H, Lang J, Loch S D, Griffin D C 2006 Plasma Phys. Control. Fusion 48 263

    [14]

    Greenland P T 2001 Proc. R. Soc. Lond. A 457 1821

    [15]

    Janev R K 1995 Atomic and Molecular Processes in Fusion Edge Plasmas (New York: Springer Science+Business Media) pp9-63

    [16]

    Wiese W L, Fuhr J R 2009 J. Phys. Chem. Ref. 38 565

    [17]

    Fujimoto T 1979 J. Quant. Spectrosc. Radiat. Transfer 21 439

    [18]

    Kato T, Nakazaki S 1989 At. Data Nucl. Data Tables 42 313

    [19]

    Voronov G S 1997 At. Data Nucl. Data Tables 65 1

    [20]

    Summers H P, O'Mullane M G 2011 AIP Conf. Proc. 1344 179

  • [1]

    ITER Physics Expert Groups on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175

    [2]

    Sun Y, Liang Y F, Qian J P, Shen B, Wan B 2015 Plasma Phys. Control. Fusion 57 045003

    [3]

    Zuo G Z, Hu J S, Li J G, Luo N C, Hu L Q, Fu J, Chen K Y, Ti A, Zhang L L 2010 Plasma Sci. Technol. 12 646

    [4]

    Xu J C, Wang F D, L B, Shen Y C, Li Y Y, Fu J, Shi Y J 2012 Acta Phys. Sin. 61 145203 (in Chinese) [徐经翠, 王福地, 吕波, 沈永才, 李颖颖, 符佳, 石跃江 2012 61 145203]

    [5]

    Wnderlich D, Dietrich S, Fantz U 2009 J. Quant. Spectrosc. Radiat. Transfer 110 62

    [6]

    Goto M 2003 J. Quant. Spectrosc. Radiat. Transfer 76 331

    [7]

    Yu Y Q, Xin Y, Ning Z Y 2011 Chin. Phys. B 20 015207

    [8]

    Peng F, Jiang G, Zhu Z H 2006 Chin. Phys. Lett. 23 3245

    [9]

    Wang J, Zhang H, Cheng X L 2013 Chin. Phys. B 22 085201

    [10]

    Xie H Q, Tan Y, Liu Y Q, Wang W H, Gao Z 2014 Acta Phys. Sin. 63 125203 (in Chinese) [谢会乔, 谭熠, 刘阳青, 王文浩, 高喆 2014 63 125203]

    [11]

    Goto M, Fujimoto T 1997 Fusion Eng. Des. 34 759

    [12]

    van der Sijde B, van der Mullen J J A M, Schram D C 1984 Beitr. Plasmaphys. 24 447

    [13]

    Summers H P, Dickson W J, O'Mullane M G, Badnell N R, Whiteford A D, Brooks D H, Lang J, Loch S D, Griffin D C 2006 Plasma Phys. Control. Fusion 48 263

    [14]

    Greenland P T 2001 Proc. R. Soc. Lond. A 457 1821

    [15]

    Janev R K 1995 Atomic and Molecular Processes in Fusion Edge Plasmas (New York: Springer Science+Business Media) pp9-63

    [16]

    Wiese W L, Fuhr J R 2009 J. Phys. Chem. Ref. 38 565

    [17]

    Fujimoto T 1979 J. Quant. Spectrosc. Radiat. Transfer 21 439

    [18]

    Kato T, Nakazaki S 1989 At. Data Nucl. Data Tables 42 313

    [19]

    Voronov G S 1997 At. Data Nucl. Data Tables 65 1

    [20]

    Summers H P, O'Mullane M G 2011 AIP Conf. Proc. 1344 179

  • [1] Sun You-Wen, Qiu Zhi-Yong, Wan Bao-Nian. Current status and prospects of burning plasma physics in magnetically confined fusion. Acta Physica Sinica, 2024, 73(17): 175202. doi: 10.7498/aps.73.20240831
    [2] Jin YiFei, Zhang HongMing, Yin XiangHui, Lyu Bo, Cheonho Bae, Ye KaiXuan, Sheng Hui, Wang ShiFan, Zhao HaiLin, GU Shuai, Yuan Hong, Lin ZiChao, Fu ShengYu, Lu DiAn, Fu Jia, Wang FuDi. Experimental investigations on mechanisms of RMP-induced intrinsic rotations at EAST. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241357
    [3] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [4] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [5] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [6] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [7] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [8] Chen Jian, Liu Zhi-Qiang, Guo Heng, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng. Physical characteristics of ion extraction simulation system based on gas discharge plasma jet. Acta Physica Sinica, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [9] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [10] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [11] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [12] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [13] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [14] Zhong Guo-Qiang, Hu Li-Qun, Zhu Yu-Bao, Lin Shi-Yao, Chen Jue-Quan, Xu Ping, Duan Yan-Min, Lu Hong-Wei. Neutron flux measurement and analysis in the HT-7 deuterium plasma. Acta Physica Sinica, 2009, 58(5): 3262-3267. doi: 10.7498/aps.58.3262
    [15] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [16] Huang Qin-Chao, Luo Jia-Rong, Wang Hua-Zhong, Li Chong. Quick identification of EAST plasma discharge shape. Acta Physica Sinica, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [17] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [18] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [19] WANG WEN-HAO, YU CHANG-XUAN, XU YU-HONG, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. MEASUREMENT OF EDGE PLASMA PARAMETERS AND THEIR ELECTROSTATIC FLUCTUATIONS ON THE HT-7 SUPERCONDUCTING TOKAMAK. Acta Physica Sinica, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [20] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
Metrics
  • Abstract views:  6627
  • PDF Downloads:  166
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2017
  • Accepted Date:  02 April 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map