Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Ni doping on optical and magnetic properties of ZnO

Hou Qing-Yu Jia Xiao-Fang Xu Zhen-Chao Zhao Chun-Wang

Citation:

Effect of Ni doping on optical and magnetic properties of ZnO

Hou Qing-Yu, Jia Xiao-Fang, Xu Zhen-Chao, Zhao Chun-Wang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nowadays, the experimental results of absorption spectrum distribution of Ni doped ZnO suffer controversy when the mole fraction of impurity is in a range from 2.78% to 6.25%. However, there is still lack of a reasonable theoretical explanation. To solve this problem, the geometry optimizations and energies of different Ni-doped ZnO systems are calculated at a state of electron spin polarization by adopting plane-wave ultra-soft pseudo potential technique based on the density function theory. Calculation results show that the volume parameter and lattice parameter of the doping system are smaller than those of the pure ZnO, and they decrease with the increase of the concentration of Ni. The formation energy in the O-rich condition is lower than that in the Zn-rich condition for the same doping system, and the system is more stable in the O-rich condition. With the same doping concentration of Ni, the formation energies of the systems with interstitial Ni and Ni replacing Zn cannot be very different. The formation energy of the system with Ni replacing Zn increases with the increase of the concentration of Ni, the doping becomes difficult, the stability of the doping system decreases, the band gap becomes narrow and the absorption spectrum is obviously red shifted. The Mulliken atomic population method is used to calculate the orbital average charges of doping systems. The results show that the sum of the charge transitions between the s state orbital and d state orbital of Ni2+ ions in the doping systems Zn0.9722Ni0.0278O, Zn0.9583Ni0.0417O and Zn0.9375Ni0.0625O supercells are all closed to +2. Thus, it is considered that the valence of Ni doped in ZnO is +2, and the Ni is present as a Ni2+ ion in the doping system. The ionized impurity concentrations of all the doping systems exceed the critical doping concentration for the Mott phase change of semiconductor ZnO, which extremely matches the condition of degeneration, and the doping systems are degenerate semiconductors. Ni-doped ZnO has a conductive hole polarization rate of up to nearly 100%. Then the band gaps are corrected via the LDA (local density approximation)+U method. The calculation results show that the doping system possesses high Curie temperature and can achieve room temperature ferromagnetism. The magnetic moment is derived from the hybrid coupling effect of p-d exchange action. Meanwhile, the magnetic moment of the doping system becomes weak with the increase of the concentration of Ni. In addition, the absorption spectrum of Ni-interstitial ZnO is blue-shifted in the ultraviolet and visible light bands.
      Corresponding author: Hou Qing-Yu, by0501119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 61664007, 11672175).
    [1]

    Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Rabani E, Banin U 2011 Science 332 77

    [2]

    Beaulac R, Schneider L, Archer P I, Bacher G, Gamelin D R 2009 Science 325 973

    [3]

    Risbud A S, Spaldin N A, Chen Z Q, Stemmer S S 2003 Phys. Rev. B 68 205202

    [4]

    Bouloudenine M, Viart N, Colis S, Kortus J D 2005 Appl. Phys. Lett. 87 052501

    [5]

    Thota S, Dutta T, Kumar J 2006 J. Phys. Condens. Matter 18 2473

    [6]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173

    [7]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [8]

    Wang X, Xu J, Zhang B, Yu H, Wang J, Zhang X, Yu J, Li Q 2006 Adv. Mater. 18 2476

    [9]

    Pearton S J, Abernathy C R, Overberg M E, Thaler G T, Norton D P 2003 J. Appl. Phys. 93 1

    [10]

    Azarang M, Shuhaimi A, Yousefi R, Sookhakian M 2014 J. Appl. Phys. 116 084307

    [11]

    Yousefi R, Sheini F J, Cheraghizade M, Gandomani S K, Sa'aedi A, Huang N M, Basirun W J, Azarang M 2015 Mater. Sci. Semicond. Process. 32 152

    [12]

    Khan I, Khan S, Nongjai R, Ahmed H, Khan W 2013 Opt. Mater. 35 1189

    [13]

    Rekha K, Nirmala M, Nair M G, Anukaliani A 2010 Physics B 405 3180

    [14]

    Gerami A M, Zadeh M V 2016 J. Supercond. Nov. Magn. 29 1295

    [15]

    Haq B U, Ahmed R, Abdellatif G, Shaari A, Butt F K, Kanoun M B, Said S G 2016 Front. Phys. 11 117101

    [16]

    Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]

    [17]

    Guruvammal D, Selvaraj S, Sundar S M 2016 J. Alloy. Compd. 682 850

    [18]

    Vijayaparkavi A P, Senthilkumaar S 2012 J. Supercond. Nov. Magn. 25 427

    [19]

    Jadhav J, Biswas S 2016 J. Alloy. Compd. 664 71

    [20]

    Pal B, Sarkar D, Giri P K 2015 Appl. Surf. Sci. 356 804

    [21]

    Wahab M S A, Jilani A, Yahia I S, Ghamdi A A A 2016 Superlattice. Microst. 94 108

    [22]

    Wang S, Li P, Liu H, Li J B, Wei Y 2010 J. Alloy. Compd. 505 362

    [23]

    Ma X G, Wu Y, Lv Y, Zhu Y F 2013 Phys. Chem. C 117 26029

    [24]

    Vijayaprasath G, Muruganrn R, Mahalingam T, Ravi G 2015 J. Mater. Sci. Mater. Electron. 26 7205

    [25]

    Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993

    [26]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [27]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [28]

    Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269

    [29]

    Pires R G, Dickstein R M, Titcomb S L, Anderson R L 1990 Cryogenics 30 1064

    [30]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloy. Compd. 580 538

    [31]

    Lu J G, Fujita S, Kawaharamura T T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [32]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [33]

    Ruderman M A, Kittel C 1954 Phys. Rev. 96 99

    [34]

    Kasuya T 1956 Prog. Theor. Phys. 16 45

    [35]

    Yosida K 1956 Phys. Rev. 106 893

    [36]

    Haq B U, Ahmed R, Abdellatif G, Shaari A, Butt F K, Kanoun M B, Said G 2016 Front. Phys. 11 117101

    [37]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, KatayamaY H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [38]

    Dana A S, Kevin R K, Daniel R G 2004 Appl. Phys. Lett. 85 1395

    [39]

    Liu Y, Hou Q Y, Xu H P, Zhao C W, Zhang Y 2012 Chem. Phys. Lett. 551 72

  • [1]

    Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Rabani E, Banin U 2011 Science 332 77

    [2]

    Beaulac R, Schneider L, Archer P I, Bacher G, Gamelin D R 2009 Science 325 973

    [3]

    Risbud A S, Spaldin N A, Chen Z Q, Stemmer S S 2003 Phys. Rev. B 68 205202

    [4]

    Bouloudenine M, Viart N, Colis S, Kortus J D 2005 Appl. Phys. Lett. 87 052501

    [5]

    Thota S, Dutta T, Kumar J 2006 J. Phys. Condens. Matter 18 2473

    [6]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173

    [7]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [8]

    Wang X, Xu J, Zhang B, Yu H, Wang J, Zhang X, Yu J, Li Q 2006 Adv. Mater. 18 2476

    [9]

    Pearton S J, Abernathy C R, Overberg M E, Thaler G T, Norton D P 2003 J. Appl. Phys. 93 1

    [10]

    Azarang M, Shuhaimi A, Yousefi R, Sookhakian M 2014 J. Appl. Phys. 116 084307

    [11]

    Yousefi R, Sheini F J, Cheraghizade M, Gandomani S K, Sa'aedi A, Huang N M, Basirun W J, Azarang M 2015 Mater. Sci. Semicond. Process. 32 152

    [12]

    Khan I, Khan S, Nongjai R, Ahmed H, Khan W 2013 Opt. Mater. 35 1189

    [13]

    Rekha K, Nirmala M, Nair M G, Anukaliani A 2010 Physics B 405 3180

    [14]

    Gerami A M, Zadeh M V 2016 J. Supercond. Nov. Magn. 29 1295

    [15]

    Haq B U, Ahmed R, Abdellatif G, Shaari A, Butt F K, Kanoun M B, Said S G 2016 Front. Phys. 11 117101

    [16]

    Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]

    [17]

    Guruvammal D, Selvaraj S, Sundar S M 2016 J. Alloy. Compd. 682 850

    [18]

    Vijayaparkavi A P, Senthilkumaar S 2012 J. Supercond. Nov. Magn. 25 427

    [19]

    Jadhav J, Biswas S 2016 J. Alloy. Compd. 664 71

    [20]

    Pal B, Sarkar D, Giri P K 2015 Appl. Surf. Sci. 356 804

    [21]

    Wahab M S A, Jilani A, Yahia I S, Ghamdi A A A 2016 Superlattice. Microst. 94 108

    [22]

    Wang S, Li P, Liu H, Li J B, Wei Y 2010 J. Alloy. Compd. 505 362

    [23]

    Ma X G, Wu Y, Lv Y, Zhu Y F 2013 Phys. Chem. C 117 26029

    [24]

    Vijayaprasath G, Muruganrn R, Mahalingam T, Ravi G 2015 J. Mater. Sci. Mater. Electron. 26 7205

    [25]

    Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993

    [26]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [27]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [28]

    Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269

    [29]

    Pires R G, Dickstein R M, Titcomb S L, Anderson R L 1990 Cryogenics 30 1064

    [30]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloy. Compd. 580 538

    [31]

    Lu J G, Fujita S, Kawaharamura T T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [32]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [33]

    Ruderman M A, Kittel C 1954 Phys. Rev. 96 99

    [34]

    Kasuya T 1956 Prog. Theor. Phys. 16 45

    [35]

    Yosida K 1956 Phys. Rev. 106 893

    [36]

    Haq B U, Ahmed R, Abdellatif G, Shaari A, Butt F K, Kanoun M B, Said G 2016 Front. Phys. 11 117101

    [37]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, KatayamaY H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [38]

    Dana A S, Kevin R K, Daniel R G 2004 Appl. Phys. Lett. 85 1395

    [39]

    Liu Y, Hou Q Y, Xu H P, Zhao C W, Zhang Y 2012 Chem. Phys. Lett. 551 72

  • [1] Lin Hong-Bin, Lin Chun, Chen Yue, Zhong Ke-Hua, Zhang Jian-Min, Xu Gui-Gui, Huang Zhi-Gao. First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO2 cathode material. Acta Physica Sinica, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [2] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [3] Ding Chao, Li Wei1\2\3, Liu Ju-Yan, Wang Lin-Lin, Cai Yun, Pan Pei-Feng. First principle study of electronic structure of Sb, S Co-doped SnO2. Acta Physica Sinica, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [5] Xu Da-Qing, Li Pei-Xian, Lou Yong-Le, Yue Gai-Li, Zhang Chao, Zhang Yan, Liu Ning-Zhuang, Yang Bo. Effects of vacancy defect and Mg substitution on electronic structure, magnetic and optical properties of wurtzite structure (Ga, Mn)N. Acta Physica Sinica, 2016, 65(19): 197501. doi: 10.7498/aps.65.197501
    [6] Shen Jie, Wei Bin, Zhou Jing, Shen Shirley Zhiqi, Xue Guang-Jie, Liu Han-Xing, Chen Wen. First-principle study of electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3. Acta Physica Sinica, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [7] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [8] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [9] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [10] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] Wang Ai-Ling, Wu Zhi-Min, Wang Cong, Hu Ai-Yuan, Zhao Ruo-Yu. First-priciples study on Mn-doped LiZnAs, a new diluted magnetic semiconductor. Acta Physica Sinica, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [12] Yao Guang-Rui, Fan Guang-Han, Zheng Shu-Wen, Ma Jia-Hong, Chen Jun, Zhang Yong, Li Shu-Ti, Su Shi-Chen, Zhang Tao. First-principles study of p-type ZnO by Te-N codoping. Acta Physica Sinica, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [13] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [14] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [15] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhao Chun-Wang, Zhang Bing. First-principles study on the electronic structures and absorption spectra of Sm-N codoped anatase TiO2. Acta Physica Sinica, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [16] Luo Li-Jin, Zhong Chong-Gui, Jiang Xue-Fan, Fang Jing-Huai, Jiang Qing. A first-principles study of electronic structure, magnetism, response to pressure and tetragonal distortions of Ni2MnSi Heusler alloy. Acta Physica Sinica, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [17] Yang Yin-Tang, Wu Jun, Cai Yu-Rong, Ding Rui-Xue, Song Jiu-Xu, Shi Li-Chun. First principles investigation on conductivity mechanism of p-type K:ZnO. Acta Physica Sinica, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [18] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
Metrics
  • Abstract views:  5330
  • PDF Downloads:  185
  • Cited By: 0
Publishing process
  • Received Date:  12 February 2017
  • Accepted Date:  02 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map