Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectrally smooth X-ray source produced by laser direct driven DT implosion target on SG-Ⅲ laser facility

Wang Ya-Qin Hu Guang-Yue Zhao Bin Zheng Jian

Citation:

Spectrally smooth X-ray source produced by laser direct driven DT implosion target on SG-Ⅲ laser facility

Wang Ya-Qin, Hu Guang-Yue, Zhao Bin, Zheng Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Spectrally smooth X-ray sources can be used in point projection radiography and absorption spectrometry diagnostics of dense plasmas. But conventionally they are end at about 3.5 keV, which can only be used to diagnose materials up to Z=18. Spectrally smooth X-ray sources above 3.5 keV are needed to study higher-Z materials. Bremsstrahlung radiation from a laser driven implosion target can produce a small size, short duration and spectrally smooth X-ray source in the range of 1-100 keV. They have been successfully applied in the investigations of middle-Z materials in the 3-7 keV X-ray range. Despite much interest for backlit X-ray studies of middle- and high-Z dense materials, research on implosion X-ray sources are scarce. Characterization of the implosion X-ray source is needed to understand and improve its performance.To provide a physical basis for optimization, the properties of the deuterium-tritium (DT) implosion target X-ray source driven by 30-180 kJ laser pulses were explored using a radiation hydrodynamics code.We focus on laser pulse energies of 30-180 kJ at 351 nm wavelength to match the range of the OMEGA laser on the low end and the SG-Ⅲ laser on the high end. The laser pulse parameters are scaled with the target size in identical fashion to that of the OMEGA laser and the ignition designs of the National Ignition Facility to maintain the same irradiance on the surface of the capsule.The temporal and spatial evolution of the implosion targets was calculated using Multi-1D, a one-dimensional radiation hydrodynamics code. The emergent X-ray spectrum is calculated by post-processing from the time histories of the temperature and density profiles output by the Multi-1D code. We adjusted the laser absorption fraction to ensure neutron yield in accordance with OMEGA's 1D simulation results.It shows that the rapid increase of density and temperature at stagnation time develops a 150 ps point X-ray flash with approximately 100 μm size. The dominant X-ray emission comes from the inner layer of the dense compressed shell, which should be the focus of future efforts to improve the X-ray emission. Softer X-rays below 30 keV carry most of the energy due to the exponentially decaying spectral profile of implosion X-ray source. Opacity of the dense compressed shell plasma can markedly reduce the very softer X-ray emission of 1-3 keV. DT fusion reactions can enhance the share of harder X-rays above 30 keV greatly, while show negligible effect on the brightness of the implosion X-ray source. Thus higher-Z plastic target or glass target may be a better choice in generating the implosion X-ray source.
      Corresponding author: Hu Guang-Yue, gyhu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105147, 11375197, 11175179, 11275202), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16), the Open Fund of the State Key Laboratory of High Field Laser Physics (SIOM), and the Science Challenge Project, China (Grant No. JCKY2016212A505).
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Drake R P 2006 High-Energy-Density Physics: Fundamental, Inertial Fusion and Experimental Astrophysics (New York: Springer Science & Business Media) pp237-266

    [3]

    Zhang J Y, Yang J M, Xu Y, Yang G H, Yan J, Meng G W, Ding Y N, Wang Y 2008 Acta Phys. Sin. 57 985 (in Chinese) [张继彦, 杨家敏, 许琰, 杨国洪, 颜君, 孟广为, 丁耀南, 汪艳 2008 57 985]

    [4]

    Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2001 Phys. Plasmas 18 113301

    [5]

    Zhang J Y, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H Y, Yang G H, Yang J M, Liu S Y, Jiang S E, Ding Y K, Zhang B H, Zheng Z J, Xu Y, Meng X J, Yan J 2012 Phys. Plasmas 19 113302

    [6]

    Zhang X D, Zhang J Y, Zhao Y, Xiong G, Zhao B, Yang G H, Zheng J, Yang J M 2012 Phys. Plasmas 19 123301

    [7]

    Sawada H, Regan S P, Radha P B, Epstein R, Li D, Goncharov V N, Hu S X, Meyerhofer D D, Delettrez J A, Jaanimagi P A, Smalyuk V A, Boehly T R, Sangster T C, Yaakobi B, Mancini R C 2009 Phys. Plasmas 16 052702

    [8]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Blancard C, Cosse P, Faussurier G 2009 Phys. Plasmas 16 058101

    [9]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah Jr J, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007 Phys. Rev. Lett. 99 265002

    [10]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104

    [11]

    Hansen J F, Glendinning S G, Heeter R F, Brockington S J E 2008 Rev. Sci. Instrum. 79 013504

    [12]

    Remington B A, Allen P, Bringa E M, Hawreliak J, Ho D, Lorenz K T, Lorenzana H, McNaney J M, Meyers M A, Pollaine S W, Rosolankova K, Sadik B, Schneider M S, Swift D, Wark J, Yaakobi B 2006 Mater. Sci. Technol. 22 474

    [13]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006

    [14]

    Eason R W, Bradley D K, Kilkenny J D, Greaves G N 1984 J. Phys. C 17 5067

    [15]

    Shiwai B A, Djaoui A, Hall T A, Tallents G J, Rose S J 1992 Laser Part. Beams 10 41

    [16]

    Yaakobi B, Marshall F J, Boehly T R, Town P R J, Meyerhofer D D 2003 J. Opt. Soc. Am. B 20 238

    [17]

    Yaakobi B, Meyerhofer D D, Boehly T R, Rehr J J, Remington B A, Allen P G, Pollaine S M, Albers R C 2004 Phys. Rev. Lett. 92 095504

    [18]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Rev. Lett. 95 075501

    [19]

    Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709

    [20]

    Hammer D 2008 JASON Report on DTRA National Ignition Facility(NIF) JSR-08-800

    [21]

    Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Su J Q, Zheng K X, Yuan X D, Zhou H, Dai W J, Zhou W, Wang F, Xu D P, Xie X D, Feng B, Peng Z T, Guo L F, Chen Y B, Zhang X J, Liu L Q, Lin D H, Dang Z, Xiang Y, Deng X W 2016 High Power Laser Science and Engineering 4 20

    [22]

    Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Loucks S J, Letzring S A, Marshall F J, McCrory R L, Morse S F B, Seka W, Soures J M, Verdon C P 1997 Opt. Commun. 133 495

    [23]

    Tommasini R, Hatchett S P, Hey D S, Iglesias C, Izumi N, Koch J A, Landen O L, MacKinnon A J, Sorce C, Delettrez J A, Glebov V Y, Sangster T C, Stoeckl C 2011 Phys. Plasmas 18 056309

    [24]

    Stoeckl C, Chiritescu C, Delettrez J A, Epstein R, Glebov V Y, Harding D R, Keck R L, Loucks S J, Lund L D, McCrory R L, McKenty P M, Marshall F J, Meyerhofer D D, Morse S F B, Regan S P, Radha P B, Roberts S, Sangster T C, Seka W, Skupsky S, Smalyuk V A, Sorce C, Soures J M, Town R P J, Frenje J A, Li C K, Petrasso R D, Séguin F H, Fletcher K, Paladino S, Freeman C, Izumi N, Lerche R, Phillips T W 2002 Phys. Plasmas 9 2195

    [25]

    Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475

    [26]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energy Density Physics 1 3

    [27]

    Chung H K, Morgan W L, Lee R W 2003 J. Quantit. Spectrosc. Radia. Transfer 81 107

    [28]

    Marshall F J, Craxton R S, Delettrez J A, Edgell D H, Elasky L M, Epstein R, Glebov V Y, Goncharov V N, Harding D R, Janezic R, Keck R L, Kilkenny J D, Knauer J P, Loucks S J, Lund L D, McCrory R L, McKenty P W, Meyerhofer D D, Radha P B, Regan S P, Sangster T C, Seka W, Smalyuk V A, Soures J M, Stoeckl C, Skupsky S 2005 Phys. Plasmas 12 056302

    [29]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford University Press) pp47-72

  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Drake R P 2006 High-Energy-Density Physics: Fundamental, Inertial Fusion and Experimental Astrophysics (New York: Springer Science & Business Media) pp237-266

    [3]

    Zhang J Y, Yang J M, Xu Y, Yang G H, Yan J, Meng G W, Ding Y N, Wang Y 2008 Acta Phys. Sin. 57 985 (in Chinese) [张继彦, 杨家敏, 许琰, 杨国洪, 颜君, 孟广为, 丁耀南, 汪艳 2008 57 985]

    [4]

    Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2001 Phys. Plasmas 18 113301

    [5]

    Zhang J Y, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H Y, Yang G H, Yang J M, Liu S Y, Jiang S E, Ding Y K, Zhang B H, Zheng Z J, Xu Y, Meng X J, Yan J 2012 Phys. Plasmas 19 113302

    [6]

    Zhang X D, Zhang J Y, Zhao Y, Xiong G, Zhao B, Yang G H, Zheng J, Yang J M 2012 Phys. Plasmas 19 123301

    [7]

    Sawada H, Regan S P, Radha P B, Epstein R, Li D, Goncharov V N, Hu S X, Meyerhofer D D, Delettrez J A, Jaanimagi P A, Smalyuk V A, Boehly T R, Sangster T C, Yaakobi B, Mancini R C 2009 Phys. Plasmas 16 052702

    [8]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Blancard C, Cosse P, Faussurier G 2009 Phys. Plasmas 16 058101

    [9]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah Jr J, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007 Phys. Rev. Lett. 99 265002

    [10]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104

    [11]

    Hansen J F, Glendinning S G, Heeter R F, Brockington S J E 2008 Rev. Sci. Instrum. 79 013504

    [12]

    Remington B A, Allen P, Bringa E M, Hawreliak J, Ho D, Lorenz K T, Lorenzana H, McNaney J M, Meyers M A, Pollaine S W, Rosolankova K, Sadik B, Schneider M S, Swift D, Wark J, Yaakobi B 2006 Mater. Sci. Technol. 22 474

    [13]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006

    [14]

    Eason R W, Bradley D K, Kilkenny J D, Greaves G N 1984 J. Phys. C 17 5067

    [15]

    Shiwai B A, Djaoui A, Hall T A, Tallents G J, Rose S J 1992 Laser Part. Beams 10 41

    [16]

    Yaakobi B, Marshall F J, Boehly T R, Town P R J, Meyerhofer D D 2003 J. Opt. Soc. Am. B 20 238

    [17]

    Yaakobi B, Meyerhofer D D, Boehly T R, Rehr J J, Remington B A, Allen P G, Pollaine S M, Albers R C 2004 Phys. Rev. Lett. 92 095504

    [18]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Rev. Lett. 95 075501

    [19]

    Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709

    [20]

    Hammer D 2008 JASON Report on DTRA National Ignition Facility(NIF) JSR-08-800

    [21]

    Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Su J Q, Zheng K X, Yuan X D, Zhou H, Dai W J, Zhou W, Wang F, Xu D P, Xie X D, Feng B, Peng Z T, Guo L F, Chen Y B, Zhang X J, Liu L Q, Lin D H, Dang Z, Xiang Y, Deng X W 2016 High Power Laser Science and Engineering 4 20

    [22]

    Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Loucks S J, Letzring S A, Marshall F J, McCrory R L, Morse S F B, Seka W, Soures J M, Verdon C P 1997 Opt. Commun. 133 495

    [23]

    Tommasini R, Hatchett S P, Hey D S, Iglesias C, Izumi N, Koch J A, Landen O L, MacKinnon A J, Sorce C, Delettrez J A, Glebov V Y, Sangster T C, Stoeckl C 2011 Phys. Plasmas 18 056309

    [24]

    Stoeckl C, Chiritescu C, Delettrez J A, Epstein R, Glebov V Y, Harding D R, Keck R L, Loucks S J, Lund L D, McCrory R L, McKenty P M, Marshall F J, Meyerhofer D D, Morse S F B, Regan S P, Radha P B, Roberts S, Sangster T C, Seka W, Skupsky S, Smalyuk V A, Sorce C, Soures J M, Town R P J, Frenje J A, Li C K, Petrasso R D, Séguin F H, Fletcher K, Paladino S, Freeman C, Izumi N, Lerche R, Phillips T W 2002 Phys. Plasmas 9 2195

    [25]

    Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475

    [26]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energy Density Physics 1 3

    [27]

    Chung H K, Morgan W L, Lee R W 2003 J. Quantit. Spectrosc. Radia. Transfer 81 107

    [28]

    Marshall F J, Craxton R S, Delettrez J A, Edgell D H, Elasky L M, Epstein R, Glebov V Y, Goncharov V N, Harding D R, Janezic R, Keck R L, Kilkenny J D, Knauer J P, Loucks S J, Lund L D, McCrory R L, McKenty P W, Meyerhofer D D, Radha P B, Regan S P, Sangster T C, Seka W, Smalyuk V A, Soures J M, Stoeckl C, Skupsky S 2005 Phys. Plasmas 12 056302

    [29]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford University Press) pp47-72

  • [1] Zou Xiong, Qi Xiao-Bo, Zhang Tao-Xian, Gao Zhang-Fan, Huang Wei-Xing. Numerical simulation of filling and evacuating process of impurity gas in target capsule of inertial confinement fusion. Acta Physica Sinica, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [2] Xiao De-Long, Dai Zi-Huan, Sun Shun-Kai, Ding Ning, Zhang Yang, Wu Ji-Ming, Yin Li, Shu Xiao-Jian. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion. Acta Physica Sinica, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [3] Yan Ji, Zhang Xing, Zheng Jian-Hua, Yuan Yong-Teng, Kang Dong-Guo, Ge Feng-Jun, Chen Li, Song Zi-Feng, Yuan Zheng, Jiang Wei, Yu Bo, Chen Bo-Lun, Pu Yu-Dong, Huang Tian-Xuan. Variations of implosion performance with compression ratio in plastic DD filled capsule implosion experiment. Acta Physica Sinica, 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [4] Qiao Xiu-Mei, Zheng Wu-Di, Gao Yao-Ming. Simulation of X-ray spectrum of Ar tracer in indirectly driven implosion. Acta Physica Sinica, 2015, 64(4): 045201. doi: 10.7498/aps.64.045201
    [5] Huang Jian-Wei, Wang Nai-Yan. Efficiency calibration for a NaI scintillation detector based on Monte-Carlo process and preliminary measurements of bremsstrahlung. Acta Physica Sinica, 2014, 63(18): 180702. doi: 10.7498/aps.63.180702
    [6] Qi Jun-Cheng, Ye Lin-Lin, Chen Rong-Chang, Xie Hong-Lan, Ren Yu-Qi, Du Guo-Hao, Deng Biao, Xiao Ti-Qiao. Coherence of X-ray in the third synchrotron radiation source. Acta Physica Sinica, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [7] Yan Ji, Zheng Jian-Hua, Chen Li, Hu Xin, Huang Tian-Xuan, Jiang Shao-En. The multi-point X-ray source and phase contrast imaging used on implosion experiment. Acta Physica Sinica, 2013, 62(12): 125203. doi: 10.7498/aps.62.125203
    [8] Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping. Electromagnetic pulse emission produced by Z pinch implosions. Acta Physica Sinica, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [9] Yu Bo, Chen Bo-Lun, Hou Li-Fei, Su Ming, Huang Tian-Xuan, Liu Shen-Ye. Hard X-ray measurement for indirect-driven imploding by chemical vapor deposited diamond detectors. Acta Physica Sinica, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [10] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [11] Dong Jian-Jun, Cao Zhu-Rong, Yang Zheng-Hua, Cheng Bo-Lun, Huang Tian-Xuan, Den Bo, Liu Sheng-Ye, Jiang Shao-En, Ding Yong-Kun, Yi Sheng-Zheng, Mu Bao-Zhong. Measurement of implosion trajectory for hohlraum-radiative-driven. Acta Physica Sinica, 2012, 61(15): 155208. doi: 10.7498/aps.61.155208
    [12] Zhou Shao-Tong, Li Jun, Huang Xian-Bin, Cai Hong-Chun, Zhang Si-Qun, Li Jing, Duan Shu-Chao, Zhou Rong-Guo. Experimental investigation of radiation charactristics of Ti wire X-pinch X-ray source on Yang accelerator. Acta Physica Sinica, 2012, 61(16): 165202. doi: 10.7498/aps.61.165202
    [13] Yan Ji, Zheng Jian-Hua, Chen Li, Lin Zhi-Wei, Jiang Shao-En. The application of phase contrast imaging to implosion capsule diagnose in high energy density physics environment. Acta Physica Sinica, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [14] Jiang Shao-En, Miao Wen-Yong, Kuang Long-Yu. Design of implosion capsules with low convergence ratio driven by radiation on Shenguang Ⅱ and Shenguang Ⅲ prototype laser facilities. Acta Physica Sinica, 2011, 60(5): 055206. doi: 10.7498/aps.60.055206
    [15] Xie Chong Guo, An Yu, Ying Chong Fu. Effect of water vapor in sonoluminescing bubble. Acta Physica Sinica, 2003, 52(1): 102-108. doi: 10.7498/aps.52.102
    [16] Teng Hao, Cao Lei-Feng, Cheng Jin-Xiu, Chen Jia-Bin, Yang Xiang-Dong, Liu Zhong-Li, Zheng Zhi-Jian. . Acta Physica Sinica, 2002, 51(4): 835-838. doi: 10.7498/aps.51.835
    [17] HUANG TIAN-XUAN, SUN KE-XU, HENG ZHI-JIAN, YI RONG-QING, DING YONG-KUN, DING YAO-NAN, CUI YAN-LI, TANG DAO-YUAN. X-RAY REEMISSION FROM GOLD DISK TARGETS HEATED BY SOFT X-RAY RADIATION. Acta Physica Sinica, 1998, 47(1): 40-46. doi: 10.7498/aps.47.40
    [18] CHENG JIN-XIU, MIAO WEN-YONG, CHEN XIAO-FENG, TANG DAO-YUAN, DING YAO-NAN, WEN TIAN-SHU, HU XIN, ZHU ZONG-YUAN. EXPERIMENTAL INVESTIGATION OF X-RAY RADIATION CHARACTERIZATION FOR CAVITY TARGETS. Acta Physica Sinica, 1996, 45(3): 436-442. doi: 10.7498/aps.45.436
    [19] LIN ZUN-QI, ZHANG YAN-ZHAN, BI WU-JI, LU HAI-HE, HE XING-FA, ZHAO ZHI-WEN, WEI XIAO-CHUN, SHI A-YING, WANG XIAO-QIN, LIN KANG-CHUN, LI JIA-MING, DONG QI. STUDY OF LASER IMPLOSION DYNAMICS BY FOUR-FRAME X-RAY SHADOWGRAPHY AND THEORETICAL SIMULATION. Acta Physica Sinica, 1988, 37(1): 20-28. doi: 10.7498/aps.37.20
    [20] CHANG TIE-QIANG. BREMSSTRAHLUNG IN PLASMAS. Acta Physica Sinica, 1982, 31(9): 1152-1165. doi: 10.7498/aps.31.1152
Metrics
  • Abstract views:  5372
  • PDF Downloads:  198
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2017
  • Accepted Date:  05 April 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map