-
The optical system of spaceborne directional polarimetric camera that employs an ultra wide-angle lens for its multiangle, a filter wheel for its multispectral and also its multipolarization capability, a CCD itself for its imaging has a certain polarization effect, which can affect the radiometric accuracy of the non-polarized channels of the instrument. The transmittance of the oblique light rays that are incident on the optical element surfaces is sensitive to the orientation of the electric field, contributing to the linear polarization effect of optical system. The precise polarization measurement and calibration of the passive imaging polarimetry are in urgent need to eliminate the instrumental polarization effect and to improve its radiometric accuracy for observation scenes. The non-polarized channel radiometric model considering the linear polarization effect is deduced in detail by analyzing the instrumental principle and optical structures. Moreover, the reasonably simplified model is established based on the actual lens characteristics. A calibration method in which completely linearly polarized light with different kinds of polarization angles irradiates sparsely the instrument within full field of view and subsequently fits the response in the least square sense, is proposed and simulated. In addition, the measured relative errors of the intensity of incident light with different kinds of polarization states caused by the calibration deviations of instrumental principal physical parameters are analyzed and calculated, such as the azimuthal angle of single pixels, explicit optic polarization rate and low frequency spatial relative transmittance. The actual instrumental parameter values and their calibration deviation amounts are acquired by carrying out the laboratory calibration experiment for instrument and combining the least square fitting. Furthermore, the maximum radiometric calibration relative error caused by the deviation of the physical parameter called explicit optic polarization rate is calculated to be 0.4%, fulfilling completely the requirement of radiometric relative accuracy 5% and retaining abundant tolerance. The study provides a theoretical basis and an experimental guidance in high accurately measuring radiation, calibrating and processing data for the instrumental non-polarized channels with full field of view.
-
Keywords:
- radiometric accuracy /
- polarization effect /
- wide field of view /
- Stokes-Mueller
[1] Yang W F, Hong J, Qiao Y L 2015 Acta Opt. Sin. 35 0822005 (in Chinese) [杨伟锋, 洪津, 乔延利 2015 光学学报 35 0822005]
[2] Diner D J, Chipman R A, Beaudey N, Cairns B, Foo L D, Macenka S A, Cunningham T J, Seshadri S, Keller C U 2005 Proc. SPIE 5659 88
[3] Waluschka E, Silverglate P, Ftaclas C, Turner A 1992 Proc. SPIE 1746 96
[4] Maymon P W, Chipman R A 1992 Proc. SPIE 1746 148
[5] Hagolle O, Goloub P, Deschamps P Y, Cosnefroy H, Herman M 1999 IEEE Trans. Geosci. Remote Sensing 37 1550
[6] Bret-Dibat T, Andre Y, Laherrere J M 1995 Proc. SPIE 2553 218
[7] Goloub P, Toubbe B, Herman M, Bailleul T, Hagolle O, Martinuzzi J M, Rouge B 1997 Proc. SPIE 2957 299
[8] Hagolle O, Guerry A, Cunin L, Millet B, Perbos J, Laherrre J M, Bret-Dibat T, Poutier L 1996 Proc. SPIE 2758 308
[9] Chen L G, Meng F G, Yuan Y L, Zheng X B 2011 J. OptoelectronLaser 22 1629 (in Chinese) [陈立刚, 孟凡刚, 袁银麟, 郑小兵 2011 光电子 22 1629]
[10] Sen A K, Kakati M 1997 Astron. Astrophys. Suppl. Ser. 126 113
[11] Hou J F, Wu T X, Wang D G, Deng Y Y, Zhang Z Y, Sun Y Z 2015 Acta Phys. Sin. 64 060701 (in Chinese) [侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿 2015 64 060701]
[12] Leroy M, Deuze, Breon F M, Hautecoeur O, Herman M, Buriez J C, Tanre D, Bouffies S, Chazette P, Roujean J L 1997 J. Geophys. Res. 102 17023
[13] Chen L G, Meng F G, Yuan Y L, Zheng X B 2010 J. Atmosph. Environ. Opt. 5 227 (in Chinese) [陈立刚, 孟凡刚, 袁银麟, 郑小兵 2010 大气与环境光学学报 5 227]
[14] Chipman R A 1999 Proc. SPIE 3754 14
[15] Nee S M F 2003 J. Opt. Soc. Am. A 20 1651
[16] Nee S M F, Yoo C, Cole T, Burge D 1998 Appl. Opt. 37 54
[17] Nee S M F 2006 Appl. Opt. 45 6497
[18] Qiu Z W, Hong J 2014 Infrared Laser Eng. 43 806 (in Chinese) [裘桢炜, 洪津 2014 红外与激光工程 43 806]
[19] Chen L G 2008 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [陈立刚 2008 博士学位论文(北京: 中国科学院研究生院)]
[20] Shintani R, Fan A Y, Kang C H 1994 Polarized Light (Beijing: Atomic Energy Press) pp60-71 (in Chinese) [新谷隆一, 范爱英, 康昌鹤 1994 偏振光(北京: 原子能出版社)第6071页]
[21] Chipman R A 1989 Opt. Eng. 28 0290
[22] Chipman R A 2005 Appl. Opt. 44 2490
[23] Fougnie B, Bracco G, Lafrance B, Ruffel C, Hagolle O, Tinel C 2007 Appl. Opt. 46 5435
[24] Sakuma F, Bret-Dibat T, Sakate H, Ono A, Perbos J, Martinuzzi J M, Imaoka K, Oaku H, Moriyama T, Miyachi Y, Tange Y 1995 Proc. SPIE 2553 232
[25] Andre Y, Laherrere J M, Bret-Dibat T, Jouret M, Martinuzzi J M, Perbos J 1995 Proc. SPIE 2572 79
-
[1] Yang W F, Hong J, Qiao Y L 2015 Acta Opt. Sin. 35 0822005 (in Chinese) [杨伟锋, 洪津, 乔延利 2015 光学学报 35 0822005]
[2] Diner D J, Chipman R A, Beaudey N, Cairns B, Foo L D, Macenka S A, Cunningham T J, Seshadri S, Keller C U 2005 Proc. SPIE 5659 88
[3] Waluschka E, Silverglate P, Ftaclas C, Turner A 1992 Proc. SPIE 1746 96
[4] Maymon P W, Chipman R A 1992 Proc. SPIE 1746 148
[5] Hagolle O, Goloub P, Deschamps P Y, Cosnefroy H, Herman M 1999 IEEE Trans. Geosci. Remote Sensing 37 1550
[6] Bret-Dibat T, Andre Y, Laherrere J M 1995 Proc. SPIE 2553 218
[7] Goloub P, Toubbe B, Herman M, Bailleul T, Hagolle O, Martinuzzi J M, Rouge B 1997 Proc. SPIE 2957 299
[8] Hagolle O, Guerry A, Cunin L, Millet B, Perbos J, Laherrre J M, Bret-Dibat T, Poutier L 1996 Proc. SPIE 2758 308
[9] Chen L G, Meng F G, Yuan Y L, Zheng X B 2011 J. OptoelectronLaser 22 1629 (in Chinese) [陈立刚, 孟凡刚, 袁银麟, 郑小兵 2011 光电子 22 1629]
[10] Sen A K, Kakati M 1997 Astron. Astrophys. Suppl. Ser. 126 113
[11] Hou J F, Wu T X, Wang D G, Deng Y Y, Zhang Z Y, Sun Y Z 2015 Acta Phys. Sin. 64 060701 (in Chinese) [侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿 2015 64 060701]
[12] Leroy M, Deuze, Breon F M, Hautecoeur O, Herman M, Buriez J C, Tanre D, Bouffies S, Chazette P, Roujean J L 1997 J. Geophys. Res. 102 17023
[13] Chen L G, Meng F G, Yuan Y L, Zheng X B 2010 J. Atmosph. Environ. Opt. 5 227 (in Chinese) [陈立刚, 孟凡刚, 袁银麟, 郑小兵 2010 大气与环境光学学报 5 227]
[14] Chipman R A 1999 Proc. SPIE 3754 14
[15] Nee S M F 2003 J. Opt. Soc. Am. A 20 1651
[16] Nee S M F, Yoo C, Cole T, Burge D 1998 Appl. Opt. 37 54
[17] Nee S M F 2006 Appl. Opt. 45 6497
[18] Qiu Z W, Hong J 2014 Infrared Laser Eng. 43 806 (in Chinese) [裘桢炜, 洪津 2014 红外与激光工程 43 806]
[19] Chen L G 2008 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [陈立刚 2008 博士学位论文(北京: 中国科学院研究生院)]
[20] Shintani R, Fan A Y, Kang C H 1994 Polarized Light (Beijing: Atomic Energy Press) pp60-71 (in Chinese) [新谷隆一, 范爱英, 康昌鹤 1994 偏振光(北京: 原子能出版社)第6071页]
[21] Chipman R A 1989 Opt. Eng. 28 0290
[22] Chipman R A 2005 Appl. Opt. 44 2490
[23] Fougnie B, Bracco G, Lafrance B, Ruffel C, Hagolle O, Tinel C 2007 Appl. Opt. 46 5435
[24] Sakuma F, Bret-Dibat T, Sakate H, Ono A, Perbos J, Martinuzzi J M, Imaoka K, Oaku H, Moriyama T, Miyachi Y, Tange Y 1995 Proc. SPIE 2553 232
[25] Andre Y, Laherrere J M, Bret-Dibat T, Jouret M, Martinuzzi J M, Perbos J 1995 Proc. SPIE 2572 79
Catalog
Metrics
- Abstract views: 6795
- PDF Downloads: 232
- Cited By: 0