Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Channeled spectropolarimetry based on division of aperture and field of view

Quan Nai-Cheng Zhang Chun-Min Mu Ting-Kui

Citation:

Channeled spectropolarimetry based on division of aperture and field of view

Quan Nai-Cheng, Zhang Chun-Min, Mu Ting-Kui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to obtain accurate image, spectrum and polarization state of target by the interferometric channeled spectropolarimeter, the interferogram and the image need to be separated. Although it can be achieved by digital image processing technology, heavy computations with approximation would be introduced. In the application of channeled spectropolarimetry, an inevitable crosstalk will be present between channels of the interferogram formed on the CCD. Spatial filtering in the optical path difference domain will generate a loss of spectral resolution and the distortion of the recovered spectrum. To overcome these drawbacks, a static imaging channeled spectropolarimeter based on division of aperture and field of view is presented. The aperture is divided by a polarization array, which consists of two polarizers with their transmission axes perpendicular to each other. The field of view is divided by a pair of lenses with the same focal lengths. The spectral modulation module is composed of an achromatic quarter wave plate, a retarder and a polarization array. The interference system consists of an achromatic half wave plate, a Wollaston prism, and a Savart polariscope. Two pairs of in-phase and anti-phase interferogram with different intensity modulations can be obtained simultaneously on a single detector array. The pure image of the target is acquired by the summation of the four interferograms. The background intensity is removed by the subtraction of the interferograms with in-phase and anti-phase, and the pure interference fringes can be acquired. By the summation and subtraction of the two pure interference fringes, the single channeled interference fringes corresponding to spectrum of intensity and linear polarization state can be obtained. Spectral and polarization information of the target are acquired by Fourier transform of the single channeled interference fringes. Compared with previous instruments, the described model has the significant advantage that the background intensity can be removed from the hardware of the layout, and thus avoiding the spatial filtering in the optical path difference domain. The obtained spectra have the same resolutions as those obtained from the interference system, and the distortion of the recovered spectrum can also be vanished. Since there is neither rotating part nor moving part, the system is relatively robust. In the present paper, the principle of the instrument is described, and the interference fringe intensity distribution formula is obtained and analyzed. The performance of the system is demonstrated through a numerical simulation. This work will provide an important theoretical basis and the practical instruction for designing a new type of imaging sepctropolarimeter and its engineering applications.
      Corresponding author: Zhang Chun-Min, zcm@mail.xjtu.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA121101), the Key Program of the National Natural Science Foundation of China (Grant No. 41530422), the National Natural Science Foundation of China (Grant Nos. 61540018, 61275184, 61405153), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 32-Y30B08-9001-13/15), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130201120047).
    [1]

    Joseph S T, Denis L G, David B C, Joseph A S 2006 Appl. Opt. 45 5453

    [2]

    Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 61 090701]

    [3]

    Denes L J, Gottlieb M S, Kaminsky B 1998 Opt. Eng. 37 1262

    [4]

    Persky M J 1995 Rev. Sci. Instrum. 66 4763

    [5]

    Oka K, Kato T 1999 Opt. Lett. 24 1475

    [6]

    Tyo J S, Turner Jr T S 2001 Appl. Opt. 40 1450

    [7]

    Gupta N, Dahmani R, Choy S 2002 Opt. Eng. 41 1033

    [8]

    Gupta N, Voloshinov V 2004 Appl. Opt. 43 2752

    [9]

    Jones S, Iannarilli F, Kebabian P 2004 Opt. Exppress 12 6559

    [10]

    Avendao-Alejo M, Rosete-Aguilar M 2006 J. Opt. Soc. Am. A 23 926

    [11]

    Kevin W P, Theodore S T 1998 Proc. SPIE 3498 223

    [12]

    Tyo J S, Theodore S T 1999 Proc. SPIE 3753 214

    [13]

    Meng X, Li J, Liu D 2013 Opt. Lett. 38 778

    [14]

    Guyot S, Anastasiadou M, Delchelle E, Martino A D 2007 Opt. Express 15 7393

    [15]

    Zhang C M, Xiang L B, Zhao B C 2002 Opt. Comm. 203 21

    [16]

    Zhang C M, Xiangli B, Zhao B C 2004 Appl. Opt. 43 6090

    [17]

    Zhang C M, Xiang L B, Zhao B C 2008 Opt. Comm. 281 2050

    [18]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [19]

    Zhang C M, Zhu H C, Zhao B C 2011 Opt. Express 19 9626

    [20]

    Zhang C M, He J 2006 Opt. Express 14 12561

    [21]

    Zhang C M, Xiang L B 2010 Interference Imaging Spectroscopy (Beijing: Science Press) p54 (in Chinese) [张淳民, 相里斌 2010 干涉成像光谱技术 (北京:科学出版社) 第54页]

    [22]

    Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福 2010 59 949]

    [23]

    Mu T K, Zhang C M, Ren W Y, Zhang L, Zhu B H 2011 Acta Phys. Sin. 60 070704 (in Chinese) [穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉 2011 60 070704]

    [24]

    Jones S H, Iannarilli F J, Kebabian P L 2004 Opt. Express 12 6559

    [25]

    Craven-Jones J, Kudenov M W, Stapelbroek M G 2011 Appl. Opt. 50 1170

    [26]

    Zhao Y Q, Zhang L, Pan Q 2009 Appl. Opt. 48 236

    [27]

    Kudenov M W, Hagen N A, Dereniak E L 2007 Opt. Express 15 12792

    [28]

    Snik F, Karalidi T, Keller C U 2009 Appl. Opt. 48 1337

    [29]

    Roy A, Rafert J B 2004 Proc. SPIE 5298 188

    [30]

    Zamora G, Truitt P, Nemeth S, Raman B, Soliz P 2004 Proc. SPIE 5314 138

    [31]

    Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096

    [32]

    Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035

  • [1]

    Joseph S T, Denis L G, David B C, Joseph A S 2006 Appl. Opt. 45 5453

    [2]

    Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 61 090701]

    [3]

    Denes L J, Gottlieb M S, Kaminsky B 1998 Opt. Eng. 37 1262

    [4]

    Persky M J 1995 Rev. Sci. Instrum. 66 4763

    [5]

    Oka K, Kato T 1999 Opt. Lett. 24 1475

    [6]

    Tyo J S, Turner Jr T S 2001 Appl. Opt. 40 1450

    [7]

    Gupta N, Dahmani R, Choy S 2002 Opt. Eng. 41 1033

    [8]

    Gupta N, Voloshinov V 2004 Appl. Opt. 43 2752

    [9]

    Jones S, Iannarilli F, Kebabian P 2004 Opt. Exppress 12 6559

    [10]

    Avendao-Alejo M, Rosete-Aguilar M 2006 J. Opt. Soc. Am. A 23 926

    [11]

    Kevin W P, Theodore S T 1998 Proc. SPIE 3498 223

    [12]

    Tyo J S, Theodore S T 1999 Proc. SPIE 3753 214

    [13]

    Meng X, Li J, Liu D 2013 Opt. Lett. 38 778

    [14]

    Guyot S, Anastasiadou M, Delchelle E, Martino A D 2007 Opt. Express 15 7393

    [15]

    Zhang C M, Xiang L B, Zhao B C 2002 Opt. Comm. 203 21

    [16]

    Zhang C M, Xiangli B, Zhao B C 2004 Appl. Opt. 43 6090

    [17]

    Zhang C M, Xiang L B, Zhao B C 2008 Opt. Comm. 281 2050

    [18]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [19]

    Zhang C M, Zhu H C, Zhao B C 2011 Opt. Express 19 9626

    [20]

    Zhang C M, He J 2006 Opt. Express 14 12561

    [21]

    Zhang C M, Xiang L B 2010 Interference Imaging Spectroscopy (Beijing: Science Press) p54 (in Chinese) [张淳民, 相里斌 2010 干涉成像光谱技术 (北京:科学出版社) 第54页]

    [22]

    Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福 2010 59 949]

    [23]

    Mu T K, Zhang C M, Ren W Y, Zhang L, Zhu B H 2011 Acta Phys. Sin. 60 070704 (in Chinese) [穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉 2011 60 070704]

    [24]

    Jones S H, Iannarilli F J, Kebabian P L 2004 Opt. Express 12 6559

    [25]

    Craven-Jones J, Kudenov M W, Stapelbroek M G 2011 Appl. Opt. 50 1170

    [26]

    Zhao Y Q, Zhang L, Pan Q 2009 Appl. Opt. 48 236

    [27]

    Kudenov M W, Hagen N A, Dereniak E L 2007 Opt. Express 15 12792

    [28]

    Snik F, Karalidi T, Keller C U 2009 Appl. Opt. 48 1337

    [29]

    Roy A, Rafert J B 2004 Proc. SPIE 5298 188

    [30]

    Zamora G, Truitt P, Nemeth S, Raman B, Soliz P 2004 Proc. SPIE 5314 138

    [31]

    Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096

    [32]

    Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035

  • [1] Liu Jie, Chen Wei, Yang Qiu-Lin, Mu Gen, Gao Hao, Shen Tao, Yang Si-Hua, Zhang Zhen-Hui. Research and development of polarized photoacoustic imaging technology. Acta Physica Sinica, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [2] Cai Qi-Sheng,  Huang Min,  Han Wei,  Liu Yi-Xuan,  Lu Xiang-Ning. Simulation of multiband imaging technology of large aperture spatial heterodyne imaging spectroscopy. Acta Physica Sinica, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [3] Qian Hong-Hu, Meng Bing-Huan, Yuan Yin-Lin, Hong Jin, Zhang Miao-Miao, Li Shuang, Qiu Zhen-Wei. Full field of view polarization effect measurement and error analysis of non-polarized channels of spaceborne directional polarimetric camera. Acta Physica Sinica, 2017, 66(10): 100701. doi: 10.7498/aps.66.100701
    [4] Cai Qi-Sheng, Huang Min, Han Wei, Cong Lin-Xiao, Lu Xiang-Ning. Heterodyne polarization interference imaging spectroscopy. Acta Physica Sinica, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [5] Yu Hui, Zhang Rui, Li Ke-Wu, Xue Rui, Wang Zhi-Bin. Principles and simulation of spectropolarimetirc imaging technique based on static dual intensity-modulated Fourier transform. Acta Physica Sinica, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [6] Li Ke-Wu, Wang Zhi-Bin, Yang Chang-Qing, Zhang Rui, Wang Yao-Li, Song Yan-Peng. A new technique of full polarization hyperspectral imaging based on acousto-optic tunable filter and liquid crystal variable retarder. Acta Physica Sinica, 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [7] Li Qi-Wei, Zhang Chun-Min, Wei Yu-Tong, Chen Qing-Ying. Analysis of the clear aperture of Savart plates in polarization interference imaging spectrometer. Acta Physica Sinica, 2015, 64(22): 224206. doi: 10.7498/aps.64.224206
    [8] Tan Lin-Qiu, Hua Deng-Xin, Wang Li, Gao Fei, Di Hui-Ge. Wind velocity retrieval and field widening techniques of fringe-imaging Mach-Zehnder interferometer for Doppler lidar. Acta Physica Sinica, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [9] Li Jie, Zhu Jing-Ping, Zhang Yun-Yao, Liu Hong, Hou Xun. Spectral zooming birefringent imaging spectrometer. Acta Physica Sinica, 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [10] Li Jie, Zhu Jing-Ping, Qi Chun, Zheng Chuan-Lin, Gao Bo, Zhang Yun-Yao, Hou Xun. Static Fourier-transform hyperspectral imaging full polarimetry. Acta Physica Sinica, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [11] Jian Xiao-Hua, Cui Yao-Yao, Xiang Yong-Jia, Han Zhi-Le. Adaptive optics multispectral photoacoustic imaging. Acta Physica Sinica, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [12] Zhu Bao-Hui, Zhang Chun-Min, Jian Xiao-Hua, Zeng Wen-Feng. The reasearch of spatiotemporally mixed modulated polarization interference imaging spectrometer. Acta Physica Sinica, 2012, 61(9): 090701. doi: 10.7498/aps.61.090701
    [13] Tang Qian, Zhao Bao-Chang, Qiu Yue-Hong, Zhang Chun-Min, Mu Ting-Kui. Technology of polarization interference imaging spectral based on pupil division and angle shear. Acta Physica Sinica, 2012, 61(23): 230701. doi: 10.7498/aps.61.230701
    [14] Mu Ting-Kui, Zhang Chun-Min, Ren Wen-Yi, Zhang Lin, Zhu Bao-Hui. Design and analysis of a polarization interference imaging spectrometer with expanded field of view. Acta Physica Sinica, 2011, 60(7): 070704. doi: 10.7498/aps.60.070704
    [15] Zhang Chun-Min, Liu Ning, Wu Fu-Quan. Analysis and calculation of Glan-Taylor prism’s transmittance at full angle of view in a polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [16] Wu Hai-Ying, Zhang Chun-Min, Zhao Bao-Chang. Theoretial analysis on extending the field-of-view of the imaging spectrometer based on combined Wollaston prisms. Acta Physica Sinica, 2009, 58(2): 930-935. doi: 10.7498/aps.58.930
    [17] Si Fu-Qi, Xie Pin-Hua, Klaus-Peter Heue, Liu-Cheng, Peng Fu-Min, Liu Wen-Qing. Hyperspectral imaging differential optical absorption spectroscopy. Acta Physica Sinica, 2008, 57(9): 6018-6023. doi: 10.7498/aps.57.6018
    [18] Du Juan, Zhang Chun-Min, Zhao Bao-Chang, Sun Yao. Analysis of the transmittance of modified Savart polariscope in the static large field of view polarization interference imaging spectrometer. Acta Physica Sinica, 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [19] Feng Guo-Ling, Gong Zhi-Qiang, Dong Wen-Jie, Li Jian-Ping. Abrupt climate change detection based on heuristic segmentation algorithm. Acta Physica Sinica, 2005, 54(11): 5494-5499. doi: 10.7498/aps.54.5494
    [20] Liang Yan-Mei, Zhai Hong-Chen, Chang Sheng-Jiang, Zhang Si-Yuan. Color image segmentation based on the principle of maximum degree of membership. Acta Physica Sinica, 2003, 52(11): 2655-2659. doi: 10.7498/aps.52.2655
Metrics
  • Abstract views:  7090
  • PDF Downloads:  275
  • Cited By: 0
Publishing process
  • Received Date:  30 November 2015
  • Accepted Date:  13 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map