Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stability analysis and fundamental diagram of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles

Qin Yan-Yan Wang Hao Wang Wei Wan Qian

Citation:

Stability analysis and fundamental diagram of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles

Qin Yan-Yan, Wang Hao, Wang Wei, Wan Qian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • This paper is aimed at building a framework for string stability analysis of traffic flow mixed with different cooperative adaptive cruise control (CACC) market penetration rates. In addition to the string stability, the fundamental diagram of the mixed flow is also taken into consideration for evaluating the effect of CACC vehicles on capacity. In order to describe the car-following dynamics of real CACC vehicles, the CACC model proposed by PATH is employed, which is validated by real experimental data. The intelligent driver model (IDM) is used as a surrogate car-following model for traditional manual driven vehicles. Based on the guidelines proposed by Ward[Ward J A 2009 Ph. D. Dissertation (Bristol:University of Bristol)], a framework is developed for the analytical investigation of heterogeneous traffic flow string stability. The framework presented considers the instability condition of traffic flow as a linear function of CACC market penetration rate. Following the framework, the string stabilities of the mixed traffic flow under different CACC market penetration rates and equilibrium velocities are analyzed. For fundamental diagram of the heterogeneous traffic flow, the equilibrium velocity-spacing functions of manual vehicles and CACC vehicles are obtained respectively based on car-following model. Then, the fundamental diagram of the density-velocity relationship of the heterogeneous traffic flow is derived based on the definition of traffic flow density. In addition, the theoretical fundamental diagram is plotted to show the property of traffic throughput. The numerical simulations are also carried out in order to investigate the effect of CACC vehicle on the characteristics of fundamental diagram. Besides, sensitivity analyses on CACC desired time gap are conducted for both string stability and fundamental diagram. Analytical studies and simulation results are as follows. 1) The heterogeneous traffic flow is stable for different equilibrium velocities and CACC market penetration rates, if manual driven vehicles are stable. Otherwise, the instability of traditional traffic flow is improved gradually with the increase of the CACC market penetration rate. Additionally, the stability will become better when equilibrium velocity is away from the velocity range of 9.6-18.6 m/s. 2) Because CACC vehicles can travel at free-flow speed in a relatively small headway, CACC vehicles can improve the capacity of heterogeneous traffic flow. 3) The results of sensitivity analysis indicate that with the increase of the CACC desired time gap, the stable region of heterogeneous traffic flow increases. However, the capacity of the fundamental diagram drops. Therefore, the value of the desired time gap should be determined with considering the effects of the two aspects on the heterogeneous traffic flow. It is noted that the CACC model used in this paper is based on the current state-of-the-art real CACC vehicle experiments. In the future, more experimental observations will yield new CACC models. However, the framework presented in this paper can still be used for the analytical investigation of string stability of the heterogeneous traffic flow at that time.
      Corresponding author: Wang Hao, haowang@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51478113, 51508122), the Foundation for Excellent Young Scientists of Southeast University, China (Grant No. 2242015R30028), and the Guangxi Science and Technology Project, China (Grant No. 15248002-10).
    [1]

    Tang T Q, Yi Z Y, Lin Q F 2017 Physica A 469 200

    [2]

    Ranjitkar P, Nakatsuji T, Kawamura A 2005 Transp. Res. Rec. 1934 22

    [3]

    Jiang R, Hu M B, Zhang H M, Gao Z Y, Jia B, Wu Q S 2015 Transp. Res. Part B: Methodol. 80 338

    [4]

    Pueboobpaphan R, van Arem B 2010 Transp. Res. Rec. 2189 89

    [5]

    Kerner B S 2016 Physica A 450 700

    [6]

    Naus G J L, Vugts R P A, Ploeg J, Molengraft M J G, Steinbuch M 2010 IEEE Trans. Veh. Technol. 59 4268

    [7]

    Milans V, Shladover S E, Spring J, Nowakowski C, Kawazoe H, Nakamura M 2014 IEEE Trans. Intell. Transp. Syst. 15 296

    [8]

    Milans V, Villagr J, Prez J, Gonzlez C 2012 IEEE Trans. Ind. Electron. 59 620

    [9]

    Jin I G, Orosz G 2014 Transp. Res. C 46 46

    [10]

    Tang T Q, Chen L, Yang S C, Shang H Y 2015 Physica A 430 148

    [11]

    Ge H X, Cui Y, Zhu K Q, Cheng R J 2015 Commun. Nonlinear Sci. Numer. Simulat. 22 903

    [12]

    Ge H X, Zheng P J, Wang W, Cheng R J 2015 Physica A 433 274

    [13]

    Tang T Q, Li J G, Yang S C, Shang H Y 2015 Physica A 419 293

    [14]

    Sau J, Monteil J, Billot R, Faouzi N E E 2014 Transp. B: Transp. Dyn. 2 60

    [15]

    Wang M, Daamen W, Hoogendoorn S P, van Arem B 2016 IEEE Trans. Intell. Transp. Syst. 17 1459

    [16]

    van Arem B, van Driel C J G, Visser R 2006 IEEE Trans. Intell. Transp. Syst. 7 429

    [17]

    Tang T Q, Xu K W, Yang S C, Ding C 2016 Physica A 441 221

    [18]

    Jerath K, Brennan S N 2012 IEEE Trans. Intell. Transp. Syst. 13 1782

    [19]

    Tang T Q, Yu Q, Yang S C, Ding C 2015 Mod. Phys. Lett. B 29 1550157

    [20]

    Milans V, Shladover S E 2014 Transp. Res. C 48 285

    [21]

    Ge H X, Cheng R J, Li Z P 2008 Physica A 387 5239

    [22]

    Yu S, Shi Z 2015 Physica A 428 206

    [23]

    Hua X D, Wang W, Wang H 2016 Acta Phys. Sin. 65 010502 (in Chinese) [华雪东, 王炜, 王昊 2016 65 010502]

    [24]

    Hua X D, Wang W, Wang H 2016 Acta Phys. Sin. 65 084503 (in Chinese) [华雪东, 王炜, 王昊 2016 65 084503]

    [25]

    Ward J A 2009 Ph. D. Dissertation (Bristol: University of Bristol)

    [26]

    Treiber M, Hennecke A, Helbing D 2000 Phys. Rev. E 62 1805

    [27]

    Kesting A, Treiber M, Schnhof M, Helbing D 2008 Transp. Res. C 16 668

    [28]

    Shladover S, Su D, Lu X Y 2012 Transp. Res. Rec. 2324 63

    [29]

    Ma X, Zheng W F, Jiang B S, Zhang J Y 2016 Chin. Phys. B 25 108902

    [30]

    Wilson R E 2008 Phil. Trans. R. Soc. A 366 2017

    [31]

    Zheng Y Z, Cheng R J, Lu Z M, Ge H X 2016 Chin. Phys. B 25 060506

    [32]

    Zheng W F, Zhang J Y 2015 Chin. Phys. B 24 058902

    [33]

    Ge H X, Meng X P, Zhu K Q, Cheng R J 2014 Chin. Phys. Lett. 31 080505

    [34]

    Tang T Q, Li C Y, Huang H J 2010 Phys. Lett. A 374 3951

    [35]

    Liu Y J, Zhang H L, He L 2012 Chin. Phys. Lett. 29 104502

    [36]

    Oh S, Yeo H 2012 Transp. Res. Rec. 2286 111

  • [1]

    Tang T Q, Yi Z Y, Lin Q F 2017 Physica A 469 200

    [2]

    Ranjitkar P, Nakatsuji T, Kawamura A 2005 Transp. Res. Rec. 1934 22

    [3]

    Jiang R, Hu M B, Zhang H M, Gao Z Y, Jia B, Wu Q S 2015 Transp. Res. Part B: Methodol. 80 338

    [4]

    Pueboobpaphan R, van Arem B 2010 Transp. Res. Rec. 2189 89

    [5]

    Kerner B S 2016 Physica A 450 700

    [6]

    Naus G J L, Vugts R P A, Ploeg J, Molengraft M J G, Steinbuch M 2010 IEEE Trans. Veh. Technol. 59 4268

    [7]

    Milans V, Shladover S E, Spring J, Nowakowski C, Kawazoe H, Nakamura M 2014 IEEE Trans. Intell. Transp. Syst. 15 296

    [8]

    Milans V, Villagr J, Prez J, Gonzlez C 2012 IEEE Trans. Ind. Electron. 59 620

    [9]

    Jin I G, Orosz G 2014 Transp. Res. C 46 46

    [10]

    Tang T Q, Chen L, Yang S C, Shang H Y 2015 Physica A 430 148

    [11]

    Ge H X, Cui Y, Zhu K Q, Cheng R J 2015 Commun. Nonlinear Sci. Numer. Simulat. 22 903

    [12]

    Ge H X, Zheng P J, Wang W, Cheng R J 2015 Physica A 433 274

    [13]

    Tang T Q, Li J G, Yang S C, Shang H Y 2015 Physica A 419 293

    [14]

    Sau J, Monteil J, Billot R, Faouzi N E E 2014 Transp. B: Transp. Dyn. 2 60

    [15]

    Wang M, Daamen W, Hoogendoorn S P, van Arem B 2016 IEEE Trans. Intell. Transp. Syst. 17 1459

    [16]

    van Arem B, van Driel C J G, Visser R 2006 IEEE Trans. Intell. Transp. Syst. 7 429

    [17]

    Tang T Q, Xu K W, Yang S C, Ding C 2016 Physica A 441 221

    [18]

    Jerath K, Brennan S N 2012 IEEE Trans. Intell. Transp. Syst. 13 1782

    [19]

    Tang T Q, Yu Q, Yang S C, Ding C 2015 Mod. Phys. Lett. B 29 1550157

    [20]

    Milans V, Shladover S E 2014 Transp. Res. C 48 285

    [21]

    Ge H X, Cheng R J, Li Z P 2008 Physica A 387 5239

    [22]

    Yu S, Shi Z 2015 Physica A 428 206

    [23]

    Hua X D, Wang W, Wang H 2016 Acta Phys. Sin. 65 010502 (in Chinese) [华雪东, 王炜, 王昊 2016 65 010502]

    [24]

    Hua X D, Wang W, Wang H 2016 Acta Phys. Sin. 65 084503 (in Chinese) [华雪东, 王炜, 王昊 2016 65 084503]

    [25]

    Ward J A 2009 Ph. D. Dissertation (Bristol: University of Bristol)

    [26]

    Treiber M, Hennecke A, Helbing D 2000 Phys. Rev. E 62 1805

    [27]

    Kesting A, Treiber M, Schnhof M, Helbing D 2008 Transp. Res. C 16 668

    [28]

    Shladover S, Su D, Lu X Y 2012 Transp. Res. Rec. 2324 63

    [29]

    Ma X, Zheng W F, Jiang B S, Zhang J Y 2016 Chin. Phys. B 25 108902

    [30]

    Wilson R E 2008 Phil. Trans. R. Soc. A 366 2017

    [31]

    Zheng Y Z, Cheng R J, Lu Z M, Ge H X 2016 Chin. Phys. B 25 060506

    [32]

    Zheng W F, Zhang J Y 2015 Chin. Phys. B 24 058902

    [33]

    Ge H X, Meng X P, Zhu K Q, Cheng R J 2014 Chin. Phys. Lett. 31 080505

    [34]

    Tang T Q, Li C Y, Huang H J 2010 Phys. Lett. A 374 3951

    [35]

    Liu Y J, Zhang H L, He L 2012 Chin. Phys. Lett. 29 104502

    [36]

    Oh S, Yeo H 2012 Transp. Res. Rec. 2286 111

  • [1] Zhang Qi, Qu Jing. Impatient behavior modelling and simulation of bidirectional pedestrian flow dynamics based on proactive effect. Acta Physica Sinica, 2022, 71(7): 070502. doi: 10.7498/aps.71.20211537
    [2] Duan Liang, Liu Chong, Zhao Li-Chen, Yang Zhan-Ying. Quantitative relations between fundamental nonlinear waves and modulation instability. Acta Physica Sinica, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [3] Liu Qiang, Luo Zhen-Bing, Deng Xiong, Yang Sheng-Ke, Jiang Hao. Linear stability of supersonic boundary layer with synthetic cold/hot jet control. Acta Physica Sinica, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [4] Hua Xue-Dong, Wang Wei, Wang Hao. A hybrid traffic flow model with considering the influence of adaptive cruise control vehicles and on-ramps. Acta Physica Sinica, 2016, 65(8): 084503. doi: 10.7498/aps.65.084503
    [5] Zhu Lin-He, Zhao Hong-Yong. Stability and bifurcation control in inertial neuron networks with delays. Acta Physica Sinica, 2014, 63(9): 090203. doi: 10.7498/aps.63.090203
    [6] Zeng You-Zhi, Zhang Ning. Effects of comprehensive information of the nearest following vehicle on traffic flow instability. Acta Physica Sinica, 2014, 63(21): 218901. doi: 10.7498/aps.63.218901
    [7] Hu Jian-Bing, Zhao Ling-Dong. Stability theorem and control of fractional systems. Acta Physica Sinica, 2013, 62(24): 240504. doi: 10.7498/aps.62.240504
    [8] Wang Jing, Feng Lu, Hao Yi, Zhao Yang, Chen Zhen-Fei. Strain effect on the morphological instability of a circular island in heteroepitaxy. Acta Physica Sinica, 2013, 62(23): 238102. doi: 10.7498/aps.62.238102
    [9] Lu Yan-Ling, Jiang Guo-Ping, Song Yu-Rong. Stability and bifurcation of epidemic spreading on adaptive network. Acta Physica Sinica, 2013, 62(13): 130202. doi: 10.7498/aps.62.130202
    [10] Hu Nai-Hong, Zhou Yu-Fei, Chen Jun-Ning. Control of fast-scale bifurcation in single-phase SPWM inverter and its stability analysis. Acta Physica Sinica, 2012, 61(13): 130504. doi: 10.7498/aps.61.130504
    [11] Cao Jian-Min, He Wei, Huang Si-Wen, Zhang Xu-Lin. Dependence of the DC stress negative bias temperature instability effect on basic device parameters in pMOSFET. Acta Physica Sinica, 2012, 61(21): 217305. doi: 10.7498/aps.61.217305
    [12] Liu Shi-Xu, Guan Hong-Zhi, Yan Hai. Chaotic behavior in the dynamical evolution of network traffic flow and its control. Acta Physica Sinica, 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [13] Zhang Li-Dong, Jia Lei, Zhu Wen-Xing. Curved road traffic flow car-following model and stability analysis. Acta Physica Sinica, 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [14] Jia Ning, Ma Shou-Feng. Comparison between the optimal velocity model and the Nagel-Schreckenberg model. Acta Physica Sinica, 2010, 59(2): 832-841. doi: 10.7498/aps.59.832
    [15] Teng Ya-Fan, Gao Zi-You, Jia Bin, Li Feng. Study on the traffic behavior of on-ramp system with two-lane main road under signal controlling. Acta Physica Sinica, 2008, 57(3): 1365-1374. doi: 10.7498/aps.57.1365
    [16] Li Wei, Xu Wei, Zhao Jun-Feng, Jin Yan-Fei. Stochastic stability and control of coupled Duffing-van der Pol systems. Acta Physica Sinica, 2005, 54(12): 5559-5565. doi: 10.7498/aps.54.5559
    [17] Chen Yan-Hong, Xue Yu. Effects of the stochastic delay probability on traffic flow*. Acta Physica Sinica, 2004, 53(12): 4145-4150. doi: 10.7498/aps.53.4145
    [18] Tan Hui-Li, Huang Ping-Hua, Li Hua-Bing, Liu Mu-Ren, Kong Ling-Jiang. A study on the traffic flow of the main road under the traffic light control. Acta Physica Sinica, 2003, 52(5): 1127-1131. doi: 10.7498/aps.52.1127
    [19] LI ZHI, HAN CHONG-ZHAO. ADAPTIVE CONTROL FOR A CLASS OF CHAOTIC SYSTEMS WITH UNCERTAIN PARAMETERS. Acta Physica Sinica, 2001, 50(5): 847-850. doi: 10.7498/aps.50.847
    [20] HAI WEN-HUA, DUAN YI-WU, ZHU XI-WEN, SHI LEI, LUO XUE-LI, HE CHUN-SHAN. CONTROLLING OF THE INSTABILITY OF-CHAOTIC MOTION IN AN ION CLOUD. Acta Physica Sinica, 1997, 46(11): 2117-2123. doi: 10.7498/aps.46.2117
Metrics
  • Abstract views:  8780
  • PDF Downloads:  563
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2016
  • Accepted Date:  27 December 2016
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map