搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应网络中病毒传播的稳定性和分岔行为研究

鲁延玲 蒋国平 宋玉蓉

引用本文:
Citation:

自适应网络中病毒传播的稳定性和分岔行为研究

鲁延玲, 蒋国平, 宋玉蓉

Stability and bifurcation of epidemic spreading on adaptive network

Lu Yan-Ling, Jiang Guo-Ping, Song Yu-Rong
PDF
导出引用
  • 自适应复杂网络是以节点状态与拓扑结构之间存在反馈回路为特征的网络. 针对自适应网络病毒传播模型, 利用非线性微分动力学系统研究病毒传播行为; 通过分析非线性系统对应雅可比矩阵的特征方程, 研究其平衡点的局部稳定性和分岔行为, 并推导出各种分岔点的计算公式. 研究表明, 当病毒传播阈值小于病毒存在阈值, 即R0R0c时, 网络中病毒逐渐消除, 系统的无病毒平衡点是局部渐近稳定的; R0cR01时, 网络出现滞后分岔, 产生双稳态现象, 系统存在稳定的无病毒平衡点、较大稳定的地方病平衡点和较小不稳定的地方病平衡点; R01时, 网络中病毒持续存在, 系统唯一的地方病平衡点是局部渐近稳定的. 研究发现, 系统先后出现了鞍结分岔、跨临界分岔、霍普夫分岔等分岔行为. 最后通过数值仿真验证所得结论的正确性.
    Adaptive network is characterized by feedback loop between states of nodes and topology of the network. In this paper, for adaptive epidemic spreading model, epidemic spreading dynamics is studied by using a nonlinear differential dynamic system. The local stability and bifurcation behavior of the equilibrium in this network model are investigated and all kinds of bifurcation point formula are obtained by analyzing its corresponding characteristic equation of Jacobian matrix of the nonlinear system. It is shown that, when the epidemic threshold is less than epidemic persistence threshold R00c, the disease always dies out and the disease-free equilibrium is asymptotically locally stable. If R0c01, a backward bifurcation leading to bistability possibly occurs, and there are possibly three equilibria: a stable disease-free equilibrium, a larger stable endemic equilibrium, and a smaller unstable endemic equilibrium. If R01, the disease is uniformly persistent and only one endemic equilibrium is asymptotically locally stable. It is also found that the system has saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation. Numerical simulations are given to verify the results of theoretical analysis.
    • 基金项目: 教育部高等学校博士学科点专项科研基金(批准号: 20103223110003);教育部人文社会科学研究基金(批准号: 12YJAZH120);江苏省自然科学基金(批准号: BK2010526);江苏省六大人才高峰高层次人才项目(批准号: SJ209006)和江苏省研究生科研创新计划项目(批准号: CXLX11_0414)资助的课题.
    • Funds: Project supported by the Specialized Research Fund for the Doctoral Program of High Education of China (Grant No. 20103223110003), the Ministry of Education Research in the Humanities and Social Sciences Planning Fund of China (Grant No. 12YJAZH120), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010526), the Six Projects Sponsoring Talent Summits of Jiangsu Province, China (Grant No. SJ209006), and the Graduate Student Innovation Research Project of Jiangsu Province, China (Grant No. CXLX11_0414).
    [1]

    Albert R, Baraba'si A L 2002 Rev. Mod. Phys. 74 47

    [2]

    Newman M E J 2003 SIAM Rev. 45 167

    [3]

    Barthelemy M, Barrat A, Pastor-Satorras R, Vespihnani A 2004 Phys. Rev. Lett. 92 178701

    [4]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117

    [5]

    Moreno Y, Pastor-Satorras R, Vespignani A 2002 Eur. Phys. J. B 26 521

    [6]

    Bruno B, Salvatore R 2010 Appl. Math and Computation 217 4010

    [7]

    Zhang H F, Fu X C 2009 Nonl. Anal TMA 70 3273

    [8]

    Wang Y Q, Jiang G P 2010 Acta Phys.Sin. 59 6734 (in Chinese) [王亚奇, 蒋国平 2010 59 6734]

    [9]

    Wang Y Q, Jiang G P 2010 Acta Phys.Sin. 59 6725 (in Chinese) [王亚奇, 蒋国平 2010 59 6725]

    [10]

    Li M Y, Smith H L, Wang L 2001 SIMA J. Appl. Math. 62 58

    [11]

    Li M Y, Wang L 2002 IMA 126 295

    [12]

    Li C G, Chen G, Chao S 2004 Solitons and Fractals 20 353

    [13]

    Li X, Chen G, Li C G 2004 Int. J. of Systems Science 35 527

    [14]

    Van den Driessche P, Watmough J 2000 J. Math. Biol. 40 525

    [15]

    Hadeler K P, van den Driessche P 1997 Math. Biosei. 146 15

    [16]

    Van den Driessche P, Watmough J 2002 Math. Biosei. 180 29

    [17]

    Tu S, Reiss E, SIAM J 1986 Appl. Math. 46 189

    [18]

    Gross T, D' Lima C J D, Blasius B 2006 Phys. Rev. Lett. 96 208701

    [19]

    Shaw L B, Schwartz I B 2008 Phys. Rev. E 77 066101

    [20]

    Gross T, Blasius B, Soc J R 2008 Interface 5 259

    [21]

    Gross Sayama T H, eds 2009 Adaptive Networks: Theory, Models and Applications (Springer)

    [22]

    Gross T, Kevrekidis I G 2008 Eur. Lett. 82 38004

    [23]

    Risau-Gusman S, Zanette D H 2009 J. Theor. Biol. 257 52

    [24]

    Zanette D, Risau-Gusm_an S 2008 J. Biol. Phys. 34 135

    [25]

    Schwartz I B, Shaw L B 2010 Physics 3

    [26]

    Song Y R, Jiang G P, Xu J G 2011 Acta Phys. Sin. 60 120509 (in Chinese) [宋玉蓉, 蒋国平, 徐加刚 2010 60 120509]

  • [1]

    Albert R, Baraba'si A L 2002 Rev. Mod. Phys. 74 47

    [2]

    Newman M E J 2003 SIAM Rev. 45 167

    [3]

    Barthelemy M, Barrat A, Pastor-Satorras R, Vespihnani A 2004 Phys. Rev. Lett. 92 178701

    [4]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117

    [5]

    Moreno Y, Pastor-Satorras R, Vespignani A 2002 Eur. Phys. J. B 26 521

    [6]

    Bruno B, Salvatore R 2010 Appl. Math and Computation 217 4010

    [7]

    Zhang H F, Fu X C 2009 Nonl. Anal TMA 70 3273

    [8]

    Wang Y Q, Jiang G P 2010 Acta Phys.Sin. 59 6734 (in Chinese) [王亚奇, 蒋国平 2010 59 6734]

    [9]

    Wang Y Q, Jiang G P 2010 Acta Phys.Sin. 59 6725 (in Chinese) [王亚奇, 蒋国平 2010 59 6725]

    [10]

    Li M Y, Smith H L, Wang L 2001 SIMA J. Appl. Math. 62 58

    [11]

    Li M Y, Wang L 2002 IMA 126 295

    [12]

    Li C G, Chen G, Chao S 2004 Solitons and Fractals 20 353

    [13]

    Li X, Chen G, Li C G 2004 Int. J. of Systems Science 35 527

    [14]

    Van den Driessche P, Watmough J 2000 J. Math. Biol. 40 525

    [15]

    Hadeler K P, van den Driessche P 1997 Math. Biosei. 146 15

    [16]

    Van den Driessche P, Watmough J 2002 Math. Biosei. 180 29

    [17]

    Tu S, Reiss E, SIAM J 1986 Appl. Math. 46 189

    [18]

    Gross T, D' Lima C J D, Blasius B 2006 Phys. Rev. Lett. 96 208701

    [19]

    Shaw L B, Schwartz I B 2008 Phys. Rev. E 77 066101

    [20]

    Gross T, Blasius B, Soc J R 2008 Interface 5 259

    [21]

    Gross Sayama T H, eds 2009 Adaptive Networks: Theory, Models and Applications (Springer)

    [22]

    Gross T, Kevrekidis I G 2008 Eur. Lett. 82 38004

    [23]

    Risau-Gusman S, Zanette D H 2009 J. Theor. Biol. 257 52

    [24]

    Zanette D, Risau-Gusm_an S 2008 J. Biol. Phys. 34 135

    [25]

    Schwartz I B, Shaw L B 2010 Physics 3

    [26]

    Song Y R, Jiang G P, Xu J G 2011 Acta Phys. Sin. 60 120509 (in Chinese) [宋玉蓉, 蒋国平, 徐加刚 2010 60 120509]

  • [1] 杨红丽, 刘楠, 杨联贵. Mdm2介导的正反馈环对p53基因网络振荡行为的影响.  , 2021, 70(13): 138701. doi: 10.7498/aps.70.20210015
    [2] 李盈科, 赵时, 楼一均, 高道舟, 杨琳, 何岱海. 新型冠状病毒肺炎的流行病学参数与模型.  , 2020, 69(9): 090202. doi: 10.7498/aps.69.20200389
    [3] 毕远宏, 杨卓琴, 何小燕. Mdm2生成速率调控的p53-Mdm2振子的全局动力学和稳定性.  , 2016, 65(2): 028701. doi: 10.7498/aps.65.028701
    [4] 杨慧, 唐明, 蔡世民, 周涛. 异质自适应网络中的核心-边缘结构及其对疾病传播的抑制作用.  , 2016, 65(5): 058901. doi: 10.7498/aps.65.058901
    [5] 朱霖河, 赵洪涌. 时滞惯性神经网络的稳定性和分岔控制.  , 2014, 63(9): 090203. doi: 10.7498/aps.63.090203
    [6] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究.  , 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [7] 李群宏, 闫玉龙, 杨丹. 耦合电路系统的分岔研究.  , 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [8] 胡文, 赵广浩, 张弓, 张景乔, 刘贤龙. 时标正弦动力学方程稳定性与分岔分析.  , 2012, 61(17): 170505. doi: 10.7498/aps.61.170505
    [9] 张立森, 蔡理, 冯朝文. 约瑟夫森结中周期解及其稳定性的解析分析.  , 2011, 60(3): 030308. doi: 10.7498/aps.60.030308
    [10] 赵洪涌, 陈凌, 于小红. 一类惯性神经网络的分岔与控制.  , 2011, 60(7): 070202. doi: 10.7498/aps.60.070202
    [11] 宋玉蓉, 蒋国平, 徐加刚. 一种基于元胞自动机的自适应网络病毒传播模型.  , 2011, 60(12): 120509. doi: 10.7498/aps.60.120509
    [12] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为.  , 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [13] 罗诗裕, 李洪涛, 吴木营, 王善进, 凌东雄, 张伟风, 邵明珠. 应变超晶格系统的共振行为及其动力学稳定性.  , 2010, 59(8): 5766-5771. doi: 10.7498/aps.59.5766
    [14] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性.  , 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [15] 何学军, 张良欣, 任爱娣. 横向补给系统高架索的稳定性与分岔研究.  , 2010, 59(5): 3088-3092. doi: 10.7498/aps.59.3088
    [16] 王晓娟, 龚志强, 周磊, 支蓉. 温度关联网络稳定性分析Ⅰ——极端事件的影响.  , 2009, 58(9): 6651-6658. doi: 10.7498/aps.58.6651
    [17] 邢真慈, 徐伟, 戎海武, 王宝燕. 有界噪声激励下带有时滞反馈的随机Mathieu-Duffing系统的响应.  , 2009, 58(2): 824-829. doi: 10.7498/aps.58.824
    [18] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性.  , 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [19] 张 维, 周淑华, 任 勇, 山秀明. Turbo译码算法的分岔与控制.  , 2006, 55(2): 622-627. doi: 10.7498/aps.55.622
    [20] 王宏霞, 虞厥邦. 细胞神经网络平衡态的稳定性分析.  , 2001, 50(12): 2303-2306. doi: 10.7498/aps.50.2303
计量
  • 文章访问数:  6710
  • PDF下载量:  758
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-08
  • 修回日期:  2013-02-27
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map