-
Nonlinear waves are ubiquitous in various physical systems, and they have become one of the research hotspots in nonlinear physics. For the experimental realization, observation and application of nonlinear waves, it is very important to understand the generation mechanism, and determine the essential excitation conditions of various nonlinear waves. In this paper, we first briefly review the experimental and theoretical research progress of nonlinear waves in recent years. Based on the exact nonlinear wave solutions and linear stability analysis results, we systemically discuss how to establish the quantitative relations between fundamental nonlinear waves and modulation instability. These relations would deepen our understanding on the mechanism of nonlinear waves. To solve the excitation conditions degenerations problem for some nonlinear waves, we further introduce the perturbation energy and relative phase to determine the excitation conditions of nonlinear waves. Finally, we present a set of complete parameters that can determine the excitation conditions of nonlinear waves, and give the excitation conditions and phase diagrams of the fundamental nonlinear waves. These results can be used to realize controllable excitation of nonlinear waves, and could be extended to many other nonlinear systems.
[1] Guo B, Pan X 1990 Chin. Phys. Lett. 7 241
Google Scholar
[2] Lou S Y, Ni G J, Huang G X 1992 Commun. Theor. Phys. 17 67
Google Scholar
[3] Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502
Google Scholar
[4] Chabchoub A, Hoffmann N, Onorato M, et al. 2012 Phys. Rev. X 2 011015
[5] Chabchoub A, Hoffmann N, Onorato M, et al. 2012 Phys. Rev. E 86 056601
Google Scholar
[6] Chen Z, Segev M, et al 1996 Opt. Lett. 21 1821
Google Scholar
[7] Chen Z, Segev M, et al 1997 J. Opt. Soc. Am. B 14 1407
Google Scholar
[8] Guo Q, Luo B, Yi F, Chi S, Xie Y 2004 Phys. Rev. E 69 016602
Google Scholar
[9] Deng D, Guo Q 2007 Opt. Lett. 32 3206
Google Scholar
[10] Solli D R, Ropers C, Koonath P, et al. 2007 Nature 450 1054
Google Scholar
[11] Kibler B, Fatome J, Finot C, et al. 2010 Nat. Phys. 6 790
Google Scholar
[12] Dudley J M, Genty G, Dias F, et al. 2009 Opt. Express 17 21497
Google Scholar
[13] Liu X 2011 Phys. Rev. A 84 053828
Google Scholar
[14] Kibler B, Fatome J, Finot C, et al. 2012 Sci. Rep. 2 463
Google Scholar
[15] Jia J, Lin J 2012 Opt. Express 20 7469
Google Scholar
[16] Zhang Y, Belic M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y 2013 Opt. Lett. 38 4585
Google Scholar
[17] Lin J, Chen W W, Jia J 2014 J. Opt. Soc. Am. A 31 188
Google Scholar
[18] Liu W, Pang L, Han H, Shen Z, Lei M, Teng H, Wei Z 2016 Photon. Research 4 111
Google Scholar
[19] Liu W, Pang L, Yan H, Ma G, Lei M, Wei Z 2016 EuroPhys. Lett. 116 64002
Google Scholar
[20] Liu X, Yao X, Cui Y 2018 Phys. Rev. Lett. 121 023905
Google Scholar
[21] Liu X, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901
Google Scholar
[22] Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005
Google Scholar
[23] Tsai Y Y, Tsai J Y, Lin I 2016 Nat. Phys. 12 573
Google Scholar
[24] Zhang W, Walls D F 1994 Phys. Rev. Lett. 72 60
Google Scholar
[25] Zhang W, Walls D F 1994 Phys. Rev. A 49 3799
Google Scholar
[26] Burger S, Bongs K, Dettmer S, et al. 1999 Phys. Rev. Lett. 83 5198
Google Scholar
[27] Denschlag J, Simsarian J E, Feder D L, et al. 2000 Science 287 97
Google Scholar
[28] Huang G X 2001 Chin. Phys. Lett. 18 628
Google Scholar
[29] Khaykovich L, Schreck F, Ferrari G, et al. 2002 Science 296 1290
Google Scholar
[30] Strecker K E, Partridge G B, Truscott A G, et al. 2002 Nature 417 150
Google Scholar
[31] Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402
Google Scholar
[32] Bludov Y V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610
Google Scholar
[33] Zhao D, Luo H G, Chai H Y 2008 Phys. Lett. A 372 5644
Google Scholar
[34] Feng B, Zhao D 2016 J. Differ. Equations 260 2973
Google Scholar
[35] Zeng J, Malomed B A 2017 Phys. Rev. E 95 052214
Google Scholar
[36] Yao Y Q, Han W, Li J, Liu W M 2018 J. Phys. B 51 105001
Google Scholar
[37] Wang D S, Liu J, Wang L 2018 Phys. Lett. A 382 799
Google Scholar
[38] He Z M, Wen L, Wang Y J, Chen G P, Tan R B, Dai C Q, Zhang X F 2019 Phys. Rev. E 99 062216
Google Scholar
[39] Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503
Google Scholar
[40] Daniel M, Kavitha L, Amuda R 1999 Phys. Rev. B 59 13774
Google Scholar
[41] Daniel M, Beula J 2009 Chaos, Solitons Fractals 41 1842
[42] Daniel M, Beula J 2009 Phys. Lett. A 373 2841
Google Scholar
[43] Zhao F, Li Z D, Li Q Y, et al 2012 Ann. Phys. 327 2085
Google Scholar
[44] Qi J W, Li Z D, Yang Z Y, et al. 2017 Phys. Lett. A 381 1874
Google Scholar
[45] Yan Z 2010 Commun. Theor. Phys. 54 947
Google Scholar
[46] Yan Z 2011 Phys. Lett. A 375 4274
Google Scholar
[47] Wu Y, Zhao L C, Lei X K 2015 Eur. Phys. J. B 88 297
Google Scholar
[48] Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917
Google Scholar
[49] Wen S, Wang Y, Su W, Xiang Y, Fu X, Fan D 2006 Phys. Rev. E 73 036617
Google Scholar
[50] Xiong H, Gan J, Wu Y 2017 Phys. Rev. Lett. 119 153901
Google Scholar
[51] Konotop V V, Yang J, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
Google Scholar
[52] Lou S Y, Huang F 2017 Sci. Rep. 7 869
Google Scholar
[53] Polo J, Ahufinger V 2013 Phys. Rev. A 88 053628
Google Scholar
[54] McDonald G D, Kuhn C C N, Hardman K S, et al. 2014 Phys. Rev. Lett. 113 013002
Google Scholar
[55] Helm J L, Cornish S L, Gardiner S A 2015 Phys. Rev. Lett. 114 134101
Google Scholar
[56] Zhao L C, Ling L, Yang Z Y, Liu J 2016 Nonlinear Dyn. 83 659
Google Scholar
[57] Solli D R, Ropers C, Jalali B 2008 Phys. Rev. Lett. 101 233902
Google Scholar
[58] Frisquet B, Chabchoub A, Fatome J, et al. 2014 Phys. Rev. A 89 023821
Google Scholar
[59] Gertjerenken B, Billam T P, Blackley C L, et al. 2013 Phys. Rev. Lett. 111 100406
Google Scholar
[60] Fatome J, Kibler B, Finot C 2013 Opt. Lett. 38 1663
Google Scholar
[61] Yang G, Wang Y, Qin Z, et al. 2014 Phys. Rev. E 90 062909
Google Scholar
[62] Zhao L C 2018 Phys. Rev. E 97 062201
Google Scholar
[63] Hasegawa A, Tappert F 1973 Appl. Phys. Lett. 23 171
Google Scholar
[64] Zakharov V E, Shabat A B 1973 Sov. Phys. JETP 37 823
[65] Kivshar Y S, Luther-Davies B 1998 Phys. Rep. 298 81
Google Scholar
[66] Kivshar Y S 1991 Phys. Rev. A 43 1677
Google Scholar
[67] Kivshar Y S, Afanasjev V V 1991 Phys. Rev. A 44 R1446
Google Scholar
[68] Dong G, Liu Z 1996 Opt. Commun. 128 8
Google Scholar
[69] Li Z, Li L, Tian H, et al. 2000 Phys. Rev. Lett. 84 4096
Google Scholar
[70] Zhao L C, Li S C, Ling L 2014 Phys. Rev. E 89 023210
Google Scholar
[71] Liu C, Yang Z Y, Zhao L C, et al. 2015 Phys. Rev. E 91 022904
Google Scholar
[72] Ren Y, Yang Z Y, Liu C, et al. 2015 Phys. Lett. A 379 2991
Google Scholar
[73] Liu C, Yang Z Y, Zhao L C, et al. 2016 Phys. Rev. E 94 042221
Google Scholar
[74] Zhao L C, Li S C, Ling L 2016 Phys. Rev. E 93 032215
Google Scholar
[75] Peregrine D H 1983 J. Australas. Math. Soc. Ser. B 25 16
Google Scholar
[76] Akhmediev N N, Korneev V I 1986 Theor. Math. Phys. 1089
[77] Kuznetsov E A 1977 Akademiia Nauk SSSR Doklady 236 575
[78] Ma Y C 1979 Stud. Appl. Math. 60 43
Google Scholar
[79] Tajiri M, Watanabe Y 1998 Phys. Rev. E 57 3510
Google Scholar
[80] Priya N V, Senthilvelan M, Lakshmanan M 2013 Phys. Rev. E 88 022918
Google Scholar
[81] 刘冲 2016 博士学位论文(西安: 西北大学)
Liu C 2016 Ph. D. Dissertation (Xi’an: Northwest University) (in Chinese)
[82] Chowdury A, Ankiewicz A, Akhmediev N 2015 Proc. R. Soc. A 471 20150130
Google Scholar
[83] Zakharov V E, Gelash A A 2013 Phys. Rev. Lett. 111 054101
Google Scholar
[84] Kibler B, Chabchoub A, Gelash A, Akhmediev N, Zakharov V E 2015 Phys. Rev. X 5 041026
[85] Zhang J H, Wang L, Liu C 2017 Proc. R. Soc. A 473 20160681
Google Scholar
[86] Liu C, Ren Y, Yang Z Y, Yang W L 2017 Chaos 27 083120
Google Scholar
[87] Liu C, Yang Z Y, Yang W L 2018 Chaos 28 083110
Google Scholar
[88] Ren Y, Liu C, Yang Z Y, Yang W L 2018 Phys. Rev. E 98 062223
Google Scholar
[89] Ren Y, Wang X, Liu C, Yang Z Y, Yang W L 2018 Commun. Nonlinear Sci. Numer. Simul. 63 161
Google Scholar
[90] Xu G, Gelash A, Chabchoub A, Zakharov V, Kibler B 2019 Phys. Rev. Lett. 122 084101
Google Scholar
[91] Liu C, Yang Z Y, Yang W L, Akhmediev N 2019 J. Opt. Soc. Am. B 36 1294
Google Scholar
[92] Guo B, Ling L 2011 Chin. Phys. Lett. 28 110202
Google Scholar
[93] Guo B, Ling L, Liu Q P 2012 Phys. Rev. E 85 026607
Google Scholar
[94] Ling L, Zhao L C 2013 Phys. Rev. E 88 043201
[95] Ling L, Guo B, Zhao L C 2014 Phys. Rev. E 89 041201(R)
[96] Zhao L C, Liu J 2012 J. Opt. Soc. Am. B 29 3119
Google Scholar
[97] Zhao L C, Liu J 2013 Phys. Rev. E 87 013201
Google Scholar
[98] Zhao L C, Xin G G, Yang Z Y 2014 Phys. Rev. E 90 022918
Google Scholar
[99] Baronio F, Conforti M, Degasperis A, et al. 2013 Phys. Rev. Lett. 111 114101
Google Scholar
[100] Baronio F, Conforti M, Degasperis A, et al. 2014 Phys. Rev. Lett. 113 034101
Google Scholar
[101] Zhao L C, Ling L, Yang Z Y, Liu J 2015 Commun. Nonlinear Sci. Numer. Simul. 23 21
Google Scholar
[102] Chen S, Cai X M, Grelu P, et al. 2016 Opt. Express 24 5886
Google Scholar
[103] Ling L, Zhao L C, Yang Z Y, et al. 2017 Phys. Rev. E 96 022211
Google Scholar
[104] Yan Z 2015 Nonlinear Dyn. 79 2515
Google Scholar
[105] Wen X Y, Yang Y, Yan Z 2015 Phys. Rev. E 92 012917
Google Scholar
[106] Zhao L C, Guo B, Ling L 2016 J. Math. Phys. 57 043508
Google Scholar
[107] Zhang G, Yan Z, Wen X Y, Chen Y 2017 Phys. Rev. E 95 042201
Google Scholar
[108] Li M, Shui J J, Xu T 2018 Appl. Math. Lett. 83 110
Google Scholar
[109] Zhao L C, Ling L 2014 arXiv: 1410.7536; 2016 J. Opt. Soc. Am. B 33 850
[110] Baronio F, Chen S, Grelu P, et al. 2015 Phys. Rev. A 91 033804
Google Scholar
[111] He J S, Xu S, Porsezian K 2012 J. Phys. Soc. Jpn. 81 124007
Google Scholar
[112] Xu S, He J S, Cheng Y, Porseizan K 2015 Math. Meth. Appl. Sci. 38 1106?
Google Scholar
[113] Xu S, He J S 2012 J. Math. Phys. 53 063507
Google Scholar
[114] Zhao L C, Yang Z Y, Ling L 2014 J. Phys. Soc. Jpn. 83 104401
Google Scholar
[115] Zhao L C, Liu C, Yang Z Y 2015 Commun. Nonlinear Sci. Numer. Simul. 20 9
Google Scholar
[116] Akhmediev N, Soto-Crespo J M, Ankiewicz A 2009 Phys. Rev. A 80 043818
Google Scholar
[117] He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914
Google Scholar
[118] Wang L, He J S, Xu H, Wang J, Porsezian K 2017 Phys. Rev. E 95 042217
Google Scholar
[119] Zakharov V E, Ostrovsky L A 2009 Physica D 238 540
Google Scholar
[120] Hammani K, Wetzel B, Kibler B, et al. 2011 Opt. Lett. 36 2140
Google Scholar
[121] Soto-Crespo J M, Ankiewicz A, Devine N, et al. 2012 J. Opt. Soc. Am. B 29 1930
Google Scholar
[122] Forest M G, McLaughlin D W, Muraki D J, et al. 2000 J. Nonlinear Sci. 10 291
Google Scholar
[123] Hirota R 1973 J. Math. Phys. 14 805
Google Scholar
[124] Sasa N, Satsuma J 1991 J. Phys. Soc. Jpn. 60 409
Google Scholar
[125] Duan L, Zhao L C, Xu W H, et al. 2017 Phys. Rev. E 95 042212
Google Scholar
[126] Li P, Wang L, Kong L Q, et al. 2018 Appl. Math. Lett. 85 110
Google Scholar
[127] Erkintalo M, Genty G, Wetzel B, et al. 2011 Phys. Lett. A 375 2029
Google Scholar
[128] Agrawal G P 2007 Nonlinear Fiber Optics (Massachusetts: Academic Press)
[129] Kevrekidis P G, Frantzeskakis D, Carretero-Gonzalez R 2007 Emergent Nonlinear Phenomena in BoseEinstein Condensates: Theory and Experiment (New York: Springer Science and Business Media)
[130] Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253
Google Scholar
[131] Gao P, Duan L, Zhao L C, et al. 2019 Chaos 29 083112
Google Scholar
[132] Duan L, Yang Z Y, Zhao L C, et al. 2016 J. Mod. Opt. 63 1397
Google Scholar
[133] Liu X S, Zhao L C, Duan L, et al. 2017 Chin. Phys. B 26 120503
Google Scholar
[134] Liu C, Yang Z Y, Zhao L C, et al. 2015 Ann. Phys. 362 130
Google Scholar
[135] Wang L, Li S, Qi F H 2016 Nonlinear Dyn. 85 389
Google Scholar
[136] Wang X, Liu C, Wang L 2017 Chaos 27 093106
Google Scholar
[137] Blanco-Redondo A, De Sterke C M, Sipe J E, et al. 2016 Nat. Commun. 7 10427
Google Scholar
[138] Daniel M, Kavitha L 2001 Phys. Rev. B 63 172302
Google Scholar
[139] Tao Y, He J S 2012 Phys. Rev. E 85 026601
Google Scholar
[140] Wang L H, Porsezian K, He J S 2013 Phys. Rev. E 87 053202
Google Scholar
[141] Ankiewicz A, Wang Y, Wabnitz S, et al. 2014 Phys. Rev. E 89 012907
Google Scholar
[142] Chowdury A, Kedziora D J, Ankiewicz A, et al. 2014 Phys. Rev. E 90 032922
Google Scholar
[143] Yang Y, Yan Z, Malomed B A 2015 Chaos 25 103112
Google Scholar
[144] Chowdury A, Kedziora D J, Ankiewicz A, et al. 2015 Phys. Rev. E 91 032928
Google Scholar
[145] Ankiewicz A, Kedziora D J, Chowdury A, et al. 2016 Phys. Rev. E 93 012206
Google Scholar
[146] Wang L, Zhang J H, Wang Z Q, et al. 2016 Phys. Rev. E 93 012214
Google Scholar
[147] Zhao L C, Ling L, Yang Z Y 2018 Phys. Rev. E 97 022218
Google Scholar
[148] Duan L, Yang Z Y, Gao P, et al. 2019 Phys. Rev. E 99 012216
Google Scholar
[149] Wen X Y, Yan Z, Boris A, Malomed 216 Chaos 26 123110
[150] Wen X Y, Yan Z 2018 J. Math. Phys. 59 073511
Google Scholar
[151] Wen X Y, Yan Z 2017 Commun. Nonlinear. Sci. Numer. Simul. 43 311
Google Scholar
[152] Ohta Y, Yang J 2012 Phys. Rev. E 86 036604
Google Scholar
[153] Yang B, Chen Y 2018 Appl. Math. Lett. 82 43
Google Scholar
[154] Li M, Xu T, Meng D 2016 J. Phys. Soc. Jpn. 85 124001
Google Scholar
[155] Xu T, Li H, Zhang H, et al. 2017 Appl. Math. Lett. 63 88
Google Scholar
[156] Dai C Q, Zhu H P 2013 J. Opt. Soc. Am. B 30 3291
Google Scholar
[157] Chen J, Chen Y, Feng B F, Maruno K 2015 Phys. Lett. A 379 1510
Google Scholar
[158] Zhang X, Chen Y, Tang X 2018 Comput. Math. Appl. 76 1938
Google Scholar
[159] Qian C, Rao J G, Liu Y B, He J S 2016 Chin. Phys. Lett. 33 110201
Google Scholar
[160] Zhang X, Chen Y 2017 Commun. Nonlinear. Sci. Numer. Simul. 52 24
Google Scholar
[161] Liu Y K, and Li B 2017 Chin. Phys. Lett. 34 010202
Google Scholar
[162] Charalampidis E G, Wang W, Kevrekidis P G, Frantzeskakis D J, Cuevas-Maraver J 2016 Phys. Rev. A 93 063623
Google Scholar
[163] Wang W, Kevrekidis P G, Carretero-Gonzalez R, Frantzeskakis D J 2016 Phys. Rev. A 93 023630
Google Scholar
[164] Rao J, Porsezian K, He J S 2017 Chaos 27 083115??
Google Scholar
[165] Rao J, Porsezian K, He J S, Kanna T 2018 Proc. R. Soc. A 474 20170627
[166] Zeng L, Zeng J, Kartashov Y V, Malomed B A 2019 Opt. Lett. 44 1206
Google Scholar
-
图 1 自散焦的两组分耦合非线性薛定谔系统的调制不稳定增益的分布 (a)调制不稳定增益在
$(\varOmega, \omega)$ 平面的分布, 绿色点状曲线表示调制不稳定区的边界; (b)调制不稳定性在$(\varOmega, a_{1})$ 平面的分布Figure 1. Modulation instability distributions of the defocusing two component coupled nonlinear Schrödinger system: (a) Modulation instability distribution in the
$(\varOmega, \omega)$ plane, green dot curves are the boundary of the modulation instability regime; (b) modulation instability distribution in the$(\varOmega, a_{1})$ plane.图 2 标准非线性薛定谔系统的调制不稳定增益分布和基本非线性波激发的相图 (a1)和(b1)分别为调制不稳定增益在
$(\omega, \varOmega)$ 平面和$(a, \varOmega)$ 平面的分布. “MI”和“MS”分别表示调制不稳定性和调制稳定性, 红色虚线是共振线; (a2)和(b2)分别为基本非线性波在(a1)和(b1)中调制不稳定增益分布平面的相图. “AB”,“RW”和“KM”分别为Akhmediev呼吸子、怪波和Kuznetsov-Ma呼吸子Figure 2. Modulation instability distributions and phase diagrams of fundamental nonlinear waves in standard nonlinear Schrödinger system: (a1) and (b1) are the distributions of the modulation instability gain in the
$(\omega, \varOmega)$ plane and the$(a, \varOmega)$ , respectively. “MI” and “MS” denote modulation instability and modulation stability, respectively. the red dotted line is the resonance line; (a2) and (b2) are the phase diagrams of fundamental nonlinear waves on the modulation instability gain distribution planes correspond to (a1) and (b1), respectively. "AB", "RW" and "KM" denote Akhmediev breather, rogue wave and Kuznetsov-Ma breather, respectively.图 3 Sasa-Satsuma系统的调制不稳定增益分布和基本非线性波激发的相图 (a) Sasa-Satsuma系统中调制不稳定增益在背景频率
$\omega$ 和扰动频率$\varOmega$ 平面的分布. “MI”和“MS”分别表示调制不稳定和调制稳定, 黄颜色圆点为共振线上临界点; (b)非线性波在调制不稳定增益分布平面的相图. “AB”, “RW” 和“KM” 分别为Akhmediev呼吸子、怪波和Kuznetsov-Ma呼吸子; “WS”, “WST”, “AD”和Periodic wave分别表示W形孤子、W形孤子链、反暗孤子和周期波Figure 3. Modulation instability distributions and phase diagrams of fundamental nonlinear waves in Sasa-Satsuma system: (a) Distributions of the modulation instability gain in the background frequency
$\omega$ and perturbation frequency$\varOmega$ plane. “MI” and “MS” denote modulation instability and modulation stability, respectively. The yellow dots are the critical points on the resonance line; (b) phase diagrams of nonlinear waves in the modulation instability gain distribution planes. “AB”, “RW” and “KM” denote Akhmediev breather, rogue wave and Kuznetsov-Ma breather, respectively; “WS”, “WST” and “AD” denote the W-shaped soliton, W-shaped soliton train and anti-dark soliton, respectively.图 4 Hirota系统中的调制不稳定增益分布和基本非线性波激发的相图 (a) Hirota系统中调制不稳定增益在背景频率
$\omega$ 和扰动频率$\varOmega$ 平面的分布. “MI”和“MS”分别表示调制不稳定和调制稳定; (b)非线性波在调制不稳定增益分布平面的相图. “AB”, “RW” 和“KM” 分别为Akhmediev呼吸子、怪波和Kuznetsov-Ma呼吸子; “WS”, “AD”, “PW”和“MPS”分别表示W形孤子、反暗孤子、周期波和多峰孤子Figure 4. Modulation instability distributions and phase diagrams of fundamental nonlinear waves in Hirota system; (a) Distributions of the modulation instability gain in the background frequency
$\omega$ and perturbation frequency$\varOmega$ plane. “MI” and “MS” denote modulation instability and modulation stability, respectively; (b) phase diagrams of nonlinear waves in the modulation instability gain distribution planes. “AB”, “RW” and “KM” denote Akhmediev breather, rogue wave and Kuznetsov-Ma breather, respectively; “WS”, “AD”, “PW” and “MPS” denote the W-shaped soliton, anti-dark soliton, periodic wave and multi-peak soliton, respectively.图 5 四阶非线性薛定谔系统调制不稳定增益分布和基本非线性波激发的相图 (a) 调制不稳定增益在背景频率
$\omega$ 和扰动频率$\varOmega$ 平面的分布, “MI”和“MS” 分别表示调制不稳定性和调制稳定性; (b),(c) 基本非线性波在背景频率$\omega$ 和扰动频率$\varOmega$ 平面的相图, “AB”, “RW”, “KM”、“PW”, “WST”, “WS$_{\rm r}$ ”, “$\rm WS_{ {nr}}$ ” 和“AD”分别为Akhmediev呼吸子、怪波、Kuznetsov-Ma呼吸子、周期波、W形孤子链、有理的W形孤子、非有理的W形孤子和反暗孤子Figure 5. Modulation instability distributions and phase diagrams of fundamental nonlinear waves in fourth-order nonlinear Schrödinger system: (a) Distributions of the modulation instability gain in the background frequency
$\omega$ and perturbation frequency$\varOmega$ plane. “MI” and “MS” denote modulation instability and modulation stability, respectively; (b), (c) phase diagrams of nonlinear waves in the background frequency$\omega$ and perturbation frequency$\varOmega$ plane. “AB”, “RW”, “KM”, “PW”, “WST”, “WS$_{\rm r}$ ”, “WS$\rm WS_{{nr}}$ ” and “AD” denote Akhmediev breather, rogue wave, Kuznetsov-Ma breather, periodic wave, W-shaped soliton train, rational W-shaped soliton, nonrational W-shaped soliton and anti-dark soliton, respectively.图 6 不同系统中平面波背景上基本非线性波在背景频率
$\omega$ , 扰动频率$\varOmega$ , 扰动能量$\varepsilon$ 和相对相位$\varphi$ 空间的相图 (a) 四阶非线性薛定谔系统, 参数取$\beta={1}/{12}$ ,$\gamma=-{1}/{36}$ ,$a=1$ ; (b) Hirota系统, 参数取$\beta={1}/{12}$ ,$\gamma=0$ ,$a=1$ ; (c)非线性薛定谔系统, 参数取$\beta={1}/{12}$ ,$\gamma=0$ ,$a=1$ ; (d)反暗孤子和非有理W形孤子依赖于相对相位的相图; (e)周期波, W形孤子链和有理W形孤子在$(\varphi, \varOmega)$ 平面的相图. 图中“TW”, “KM”, “AB”, “RW”, “MPS”, “AD”, “WS$_{\rm {nr}}$ ”, “PW”, “WST”和“WS$_{\rm r}$ ”分别表示Tajiri-Watanabe呼吸子、Kuznetsov-Ma呼吸子、Akhmediev呼吸子、怪波、多峰孤子、反暗孤子、非有理W形孤子、周期波、W形孤子链和有理W形孤子Figure 6. Phase diagrams of nonlinear waves in the background frequency
$\omega$ , perturbation frequency$\varOmega$ , perturbation energy$\varepsilon$ and relative phase$\varphi$ space for different systems: (a) Fourth-order nonlinear Schrödinger system. Parameters are$\beta={1}/{12}$ ,$\gamma=-{1}/{36}$ ,$a=1$ ; (b) hirota system. Parameters are$\beta={1}/{12}$ ,$\gamma=0$ ,$a=1$ ; (c) nonlinear Schrödinger system. Parameters are$\beta=\gamma=0$ ,$a=1$ ; (d) phase diagram of anti-dark soliton and nonrational W-shaped soliton in relative phase space; (e) phase diagram of periodic wave, W-shaped soliton train and rational W-shaped soliton in the$(\varphi, \varOmega)$ plane. “TW”, “KM”, “AB”, “RW”, “MPS”, “AD”, “WS$_{\rm {nr}}$ ”, “PW”, “WST” and “WS$_{\rm r}$ ” denote Tajiri-Watanabe breather, Kuznetsov-Ma breather, Akhmediev breather, rogue wave, multi-peak soliton, anti-dark soliton, nonrational W-shaped soliton, periodic wave, W-shaped soliton train and rational W-shaped soliton.图 7 不同非线性波的转换关系 (a) 呼吸子和怪波之间的转换关系; (b) 孤子和周期波之间的转换关系. 图中“TW”, “KM”, “AB”, “RW”分别为Tajiri-Watanabe呼吸子、Kuznetsov-Ma呼吸子、Akhmediev呼吸子和怪波, “MPS”, “AD”, “WS
$_{\rm {nr}}$ ”, “PW”, “WST”和“WS$_{\rm r}$ ” 分别表示多峰孤子、反暗孤子、非有理W形孤子、周期波、W形孤子链和有理W形孤子Figure 7. Conversion relationship of different nonlinear waves: (a) Conversion relationship between breathers and rogue wave; (b) conversion relationship between the solitons and periodic waves. “TW”, “KM”, “AB”, “RW”, “MPS”, “AD”, “WS
$_{\rm {nr}}$ ”, “PW”, “WST” and “WS$_{\rm r}$ ” denote Tajiri-Watanabe breather, Kuznetsov-Ma breather, Akhmediev breather, rogue wave, multi-peak soliton, anti-dark soliton, nonrational W-shaped soliton, periodic wave, W-shaped soliton train and rational W-shaped soliton.表 1 基本非线性波的激发条件
Table 1. Excitation conditions of fundamental nonlinear waves.
激发条件 非线性波类型 $\varOmega$ $\omega$ $\varepsilon$ $\varphi$ 0 $\omega^{2}-\alpha\neq0 $ 0 $\varphi\in \left(\dfrac{{\text{π}}}{2}, \dfrac{3{\text{π}}}{2}\right)+2 n{\text{π}}$ 怪波 $\omega^{2}-\alpha=0$, $\alpha\geqslant 0$ 有理W形孤子 0 $\omega^{2}-\dfrac{\varepsilon^{2}}{24}-\alpha\neq0$, $\varepsilon>0$ $\varphi\in\mathbb{R}$ Kuznetsov-Ma呼吸子 $\omega^{2}-\dfrac{\varepsilon^{2}}{24}-\alpha=0$, $\varepsilon>0$ $\varphi\in\left(\dfrac{{\text{π}}}{2},\right. \left.\dfrac{3{\text{π}}}{2}\right]+2 n{\text{π}}$ 非有理W形孤子 $\omega^{2}-\dfrac{\varepsilon^{2}}{24}-\alpha=0$, $\varepsilon > 0$ $\varphi\in \left(-\dfrac{{\text{π}}}{2},\right. \left.\dfrac{{\text{π}}}{2}\right]+2 n{\text{π}}$ 反暗孤子 $\omega^{2}+\dfrac{\varOmega^{2} }{6}-\alpha\neq0, \varOmega\in(0, 2)$ 0 $\varphi\in \left(\dfrac{{\text{π}}}{2},\dfrac{3{\text{π}}}{2}\right)+2 n{\text{π}}$ Akhmediev呼吸子 $\omega^{2}+\dfrac{\varOmega^{2} }{6}-\alpha=0$ $0<|\varOmega|<\dfrac{\sqrt{3}}{|\sec\varphi|}$ W形孤子链 $\omega^{2}+\dfrac{\varOmega^{2} }{6}-\alpha=0$ $\dfrac{\sqrt{3}}{|\sec\varphi|}<|\varOmega|<\dfrac{2}{|\sec\varphi|}$ 周期波 $1+2\beta\left(\pm\sqrt{\varDelta}-3\omega\right)+2\gamma\nabla\neq0$ $\varphi\in \mathbb{\rm R}$ Tajiri-Watanabe呼吸子 $1+2\beta\left(\pm\sqrt{\varDelta}-3\omega\right)+2\gamma\nabla=0$ 多峰孤子 注1: $\omega$, $\varOmega$, $\varepsilon$和$\varphi$分别为背景频率、扰动频率、扰动能量和相对相位. 参数$\alpha=\dfrac{\beta^{2}}{16\gamma^{2}}+\dfrac{1}{12\gamma}+a^{2}$, $\varDelta = {\bigg[ {\dfrac{ {\sqrt { { {({\varepsilon ^2} - 4{\varOmega ^2} + 16{a^2})}^2} + 16{\varepsilon ^2}{\varOmega ^2} } - ({\varepsilon ^2} - 4{\varOmega ^2} + 16{a^2})} }{8} } \bigg]^{1/2} }$, $\nabla=-2\varDelta\pm8\omega\sqrt{\varDelta}-6\omega^{2}+6 a^{2}+\dfrac{1}{4}\varepsilon^{2}-\varOmega^{2}$. -
[1] Guo B, Pan X 1990 Chin. Phys. Lett. 7 241
Google Scholar
[2] Lou S Y, Ni G J, Huang G X 1992 Commun. Theor. Phys. 17 67
Google Scholar
[3] Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502
Google Scholar
[4] Chabchoub A, Hoffmann N, Onorato M, et al. 2012 Phys. Rev. X 2 011015
[5] Chabchoub A, Hoffmann N, Onorato M, et al. 2012 Phys. Rev. E 86 056601
Google Scholar
[6] Chen Z, Segev M, et al 1996 Opt. Lett. 21 1821
Google Scholar
[7] Chen Z, Segev M, et al 1997 J. Opt. Soc. Am. B 14 1407
Google Scholar
[8] Guo Q, Luo B, Yi F, Chi S, Xie Y 2004 Phys. Rev. E 69 016602
Google Scholar
[9] Deng D, Guo Q 2007 Opt. Lett. 32 3206
Google Scholar
[10] Solli D R, Ropers C, Koonath P, et al. 2007 Nature 450 1054
Google Scholar
[11] Kibler B, Fatome J, Finot C, et al. 2010 Nat. Phys. 6 790
Google Scholar
[12] Dudley J M, Genty G, Dias F, et al. 2009 Opt. Express 17 21497
Google Scholar
[13] Liu X 2011 Phys. Rev. A 84 053828
Google Scholar
[14] Kibler B, Fatome J, Finot C, et al. 2012 Sci. Rep. 2 463
Google Scholar
[15] Jia J, Lin J 2012 Opt. Express 20 7469
Google Scholar
[16] Zhang Y, Belic M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y 2013 Opt. Lett. 38 4585
Google Scholar
[17] Lin J, Chen W W, Jia J 2014 J. Opt. Soc. Am. A 31 188
Google Scholar
[18] Liu W, Pang L, Han H, Shen Z, Lei M, Teng H, Wei Z 2016 Photon. Research 4 111
Google Scholar
[19] Liu W, Pang L, Yan H, Ma G, Lei M, Wei Z 2016 EuroPhys. Lett. 116 64002
Google Scholar
[20] Liu X, Yao X, Cui Y 2018 Phys. Rev. Lett. 121 023905
Google Scholar
[21] Liu X, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901
Google Scholar
[22] Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005
Google Scholar
[23] Tsai Y Y, Tsai J Y, Lin I 2016 Nat. Phys. 12 573
Google Scholar
[24] Zhang W, Walls D F 1994 Phys. Rev. Lett. 72 60
Google Scholar
[25] Zhang W, Walls D F 1994 Phys. Rev. A 49 3799
Google Scholar
[26] Burger S, Bongs K, Dettmer S, et al. 1999 Phys. Rev. Lett. 83 5198
Google Scholar
[27] Denschlag J, Simsarian J E, Feder D L, et al. 2000 Science 287 97
Google Scholar
[28] Huang G X 2001 Chin. Phys. Lett. 18 628
Google Scholar
[29] Khaykovich L, Schreck F, Ferrari G, et al. 2002 Science 296 1290
Google Scholar
[30] Strecker K E, Partridge G B, Truscott A G, et al. 2002 Nature 417 150
Google Scholar
[31] Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402
Google Scholar
[32] Bludov Y V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610
Google Scholar
[33] Zhao D, Luo H G, Chai H Y 2008 Phys. Lett. A 372 5644
Google Scholar
[34] Feng B, Zhao D 2016 J. Differ. Equations 260 2973
Google Scholar
[35] Zeng J, Malomed B A 2017 Phys. Rev. E 95 052214
Google Scholar
[36] Yao Y Q, Han W, Li J, Liu W M 2018 J. Phys. B 51 105001
Google Scholar
[37] Wang D S, Liu J, Wang L 2018 Phys. Lett. A 382 799
Google Scholar
[38] He Z M, Wen L, Wang Y J, Chen G P, Tan R B, Dai C Q, Zhang X F 2019 Phys. Rev. E 99 062216
Google Scholar
[39] Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503
Google Scholar
[40] Daniel M, Kavitha L, Amuda R 1999 Phys. Rev. B 59 13774
Google Scholar
[41] Daniel M, Beula J 2009 Chaos, Solitons Fractals 41 1842
[42] Daniel M, Beula J 2009 Phys. Lett. A 373 2841
Google Scholar
[43] Zhao F, Li Z D, Li Q Y, et al 2012 Ann. Phys. 327 2085
Google Scholar
[44] Qi J W, Li Z D, Yang Z Y, et al. 2017 Phys. Lett. A 381 1874
Google Scholar
[45] Yan Z 2010 Commun. Theor. Phys. 54 947
Google Scholar
[46] Yan Z 2011 Phys. Lett. A 375 4274
Google Scholar
[47] Wu Y, Zhao L C, Lei X K 2015 Eur. Phys. J. B 88 297
Google Scholar
[48] Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917
Google Scholar
[49] Wen S, Wang Y, Su W, Xiang Y, Fu X, Fan D 2006 Phys. Rev. E 73 036617
Google Scholar
[50] Xiong H, Gan J, Wu Y 2017 Phys. Rev. Lett. 119 153901
Google Scholar
[51] Konotop V V, Yang J, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
Google Scholar
[52] Lou S Y, Huang F 2017 Sci. Rep. 7 869
Google Scholar
[53] Polo J, Ahufinger V 2013 Phys. Rev. A 88 053628
Google Scholar
[54] McDonald G D, Kuhn C C N, Hardman K S, et al. 2014 Phys. Rev. Lett. 113 013002
Google Scholar
[55] Helm J L, Cornish S L, Gardiner S A 2015 Phys. Rev. Lett. 114 134101
Google Scholar
[56] Zhao L C, Ling L, Yang Z Y, Liu J 2016 Nonlinear Dyn. 83 659
Google Scholar
[57] Solli D R, Ropers C, Jalali B 2008 Phys. Rev. Lett. 101 233902
Google Scholar
[58] Frisquet B, Chabchoub A, Fatome J, et al. 2014 Phys. Rev. A 89 023821
Google Scholar
[59] Gertjerenken B, Billam T P, Blackley C L, et al. 2013 Phys. Rev. Lett. 111 100406
Google Scholar
[60] Fatome J, Kibler B, Finot C 2013 Opt. Lett. 38 1663
Google Scholar
[61] Yang G, Wang Y, Qin Z, et al. 2014 Phys. Rev. E 90 062909
Google Scholar
[62] Zhao L C 2018 Phys. Rev. E 97 062201
Google Scholar
[63] Hasegawa A, Tappert F 1973 Appl. Phys. Lett. 23 171
Google Scholar
[64] Zakharov V E, Shabat A B 1973 Sov. Phys. JETP 37 823
[65] Kivshar Y S, Luther-Davies B 1998 Phys. Rep. 298 81
Google Scholar
[66] Kivshar Y S 1991 Phys. Rev. A 43 1677
Google Scholar
[67] Kivshar Y S, Afanasjev V V 1991 Phys. Rev. A 44 R1446
Google Scholar
[68] Dong G, Liu Z 1996 Opt. Commun. 128 8
Google Scholar
[69] Li Z, Li L, Tian H, et al. 2000 Phys. Rev. Lett. 84 4096
Google Scholar
[70] Zhao L C, Li S C, Ling L 2014 Phys. Rev. E 89 023210
Google Scholar
[71] Liu C, Yang Z Y, Zhao L C, et al. 2015 Phys. Rev. E 91 022904
Google Scholar
[72] Ren Y, Yang Z Y, Liu C, et al. 2015 Phys. Lett. A 379 2991
Google Scholar
[73] Liu C, Yang Z Y, Zhao L C, et al. 2016 Phys. Rev. E 94 042221
Google Scholar
[74] Zhao L C, Li S C, Ling L 2016 Phys. Rev. E 93 032215
Google Scholar
[75] Peregrine D H 1983 J. Australas. Math. Soc. Ser. B 25 16
Google Scholar
[76] Akhmediev N N, Korneev V I 1986 Theor. Math. Phys. 1089
[77] Kuznetsov E A 1977 Akademiia Nauk SSSR Doklady 236 575
[78] Ma Y C 1979 Stud. Appl. Math. 60 43
Google Scholar
[79] Tajiri M, Watanabe Y 1998 Phys. Rev. E 57 3510
Google Scholar
[80] Priya N V, Senthilvelan M, Lakshmanan M 2013 Phys. Rev. E 88 022918
Google Scholar
[81] 刘冲 2016 博士学位论文(西安: 西北大学)
Liu C 2016 Ph. D. Dissertation (Xi’an: Northwest University) (in Chinese)
[82] Chowdury A, Ankiewicz A, Akhmediev N 2015 Proc. R. Soc. A 471 20150130
Google Scholar
[83] Zakharov V E, Gelash A A 2013 Phys. Rev. Lett. 111 054101
Google Scholar
[84] Kibler B, Chabchoub A, Gelash A, Akhmediev N, Zakharov V E 2015 Phys. Rev. X 5 041026
[85] Zhang J H, Wang L, Liu C 2017 Proc. R. Soc. A 473 20160681
Google Scholar
[86] Liu C, Ren Y, Yang Z Y, Yang W L 2017 Chaos 27 083120
Google Scholar
[87] Liu C, Yang Z Y, Yang W L 2018 Chaos 28 083110
Google Scholar
[88] Ren Y, Liu C, Yang Z Y, Yang W L 2018 Phys. Rev. E 98 062223
Google Scholar
[89] Ren Y, Wang X, Liu C, Yang Z Y, Yang W L 2018 Commun. Nonlinear Sci. Numer. Simul. 63 161
Google Scholar
[90] Xu G, Gelash A, Chabchoub A, Zakharov V, Kibler B 2019 Phys. Rev. Lett. 122 084101
Google Scholar
[91] Liu C, Yang Z Y, Yang W L, Akhmediev N 2019 J. Opt. Soc. Am. B 36 1294
Google Scholar
[92] Guo B, Ling L 2011 Chin. Phys. Lett. 28 110202
Google Scholar
[93] Guo B, Ling L, Liu Q P 2012 Phys. Rev. E 85 026607
Google Scholar
[94] Ling L, Zhao L C 2013 Phys. Rev. E 88 043201
[95] Ling L, Guo B, Zhao L C 2014 Phys. Rev. E 89 041201(R)
[96] Zhao L C, Liu J 2012 J. Opt. Soc. Am. B 29 3119
Google Scholar
[97] Zhao L C, Liu J 2013 Phys. Rev. E 87 013201
Google Scholar
[98] Zhao L C, Xin G G, Yang Z Y 2014 Phys. Rev. E 90 022918
Google Scholar
[99] Baronio F, Conforti M, Degasperis A, et al. 2013 Phys. Rev. Lett. 111 114101
Google Scholar
[100] Baronio F, Conforti M, Degasperis A, et al. 2014 Phys. Rev. Lett. 113 034101
Google Scholar
[101] Zhao L C, Ling L, Yang Z Y, Liu J 2015 Commun. Nonlinear Sci. Numer. Simul. 23 21
Google Scholar
[102] Chen S, Cai X M, Grelu P, et al. 2016 Opt. Express 24 5886
Google Scholar
[103] Ling L, Zhao L C, Yang Z Y, et al. 2017 Phys. Rev. E 96 022211
Google Scholar
[104] Yan Z 2015 Nonlinear Dyn. 79 2515
Google Scholar
[105] Wen X Y, Yang Y, Yan Z 2015 Phys. Rev. E 92 012917
Google Scholar
[106] Zhao L C, Guo B, Ling L 2016 J. Math. Phys. 57 043508
Google Scholar
[107] Zhang G, Yan Z, Wen X Y, Chen Y 2017 Phys. Rev. E 95 042201
Google Scholar
[108] Li M, Shui J J, Xu T 2018 Appl. Math. Lett. 83 110
Google Scholar
[109] Zhao L C, Ling L 2014 arXiv: 1410.7536; 2016 J. Opt. Soc. Am. B 33 850
[110] Baronio F, Chen S, Grelu P, et al. 2015 Phys. Rev. A 91 033804
Google Scholar
[111] He J S, Xu S, Porsezian K 2012 J. Phys. Soc. Jpn. 81 124007
Google Scholar
[112] Xu S, He J S, Cheng Y, Porseizan K 2015 Math. Meth. Appl. Sci. 38 1106?
Google Scholar
[113] Xu S, He J S 2012 J. Math. Phys. 53 063507
Google Scholar
[114] Zhao L C, Yang Z Y, Ling L 2014 J. Phys. Soc. Jpn. 83 104401
Google Scholar
[115] Zhao L C, Liu C, Yang Z Y 2015 Commun. Nonlinear Sci. Numer. Simul. 20 9
Google Scholar
[116] Akhmediev N, Soto-Crespo J M, Ankiewicz A 2009 Phys. Rev. A 80 043818
Google Scholar
[117] He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914
Google Scholar
[118] Wang L, He J S, Xu H, Wang J, Porsezian K 2017 Phys. Rev. E 95 042217
Google Scholar
[119] Zakharov V E, Ostrovsky L A 2009 Physica D 238 540
Google Scholar
[120] Hammani K, Wetzel B, Kibler B, et al. 2011 Opt. Lett. 36 2140
Google Scholar
[121] Soto-Crespo J M, Ankiewicz A, Devine N, et al. 2012 J. Opt. Soc. Am. B 29 1930
Google Scholar
[122] Forest M G, McLaughlin D W, Muraki D J, et al. 2000 J. Nonlinear Sci. 10 291
Google Scholar
[123] Hirota R 1973 J. Math. Phys. 14 805
Google Scholar
[124] Sasa N, Satsuma J 1991 J. Phys. Soc. Jpn. 60 409
Google Scholar
[125] Duan L, Zhao L C, Xu W H, et al. 2017 Phys. Rev. E 95 042212
Google Scholar
[126] Li P, Wang L, Kong L Q, et al. 2018 Appl. Math. Lett. 85 110
Google Scholar
[127] Erkintalo M, Genty G, Wetzel B, et al. 2011 Phys. Lett. A 375 2029
Google Scholar
[128] Agrawal G P 2007 Nonlinear Fiber Optics (Massachusetts: Academic Press)
[129] Kevrekidis P G, Frantzeskakis D, Carretero-Gonzalez R 2007 Emergent Nonlinear Phenomena in BoseEinstein Condensates: Theory and Experiment (New York: Springer Science and Business Media)
[130] Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253
Google Scholar
[131] Gao P, Duan L, Zhao L C, et al. 2019 Chaos 29 083112
Google Scholar
[132] Duan L, Yang Z Y, Zhao L C, et al. 2016 J. Mod. Opt. 63 1397
Google Scholar
[133] Liu X S, Zhao L C, Duan L, et al. 2017 Chin. Phys. B 26 120503
Google Scholar
[134] Liu C, Yang Z Y, Zhao L C, et al. 2015 Ann. Phys. 362 130
Google Scholar
[135] Wang L, Li S, Qi F H 2016 Nonlinear Dyn. 85 389
Google Scholar
[136] Wang X, Liu C, Wang L 2017 Chaos 27 093106
Google Scholar
[137] Blanco-Redondo A, De Sterke C M, Sipe J E, et al. 2016 Nat. Commun. 7 10427
Google Scholar
[138] Daniel M, Kavitha L 2001 Phys. Rev. B 63 172302
Google Scholar
[139] Tao Y, He J S 2012 Phys. Rev. E 85 026601
Google Scholar
[140] Wang L H, Porsezian K, He J S 2013 Phys. Rev. E 87 053202
Google Scholar
[141] Ankiewicz A, Wang Y, Wabnitz S, et al. 2014 Phys. Rev. E 89 012907
Google Scholar
[142] Chowdury A, Kedziora D J, Ankiewicz A, et al. 2014 Phys. Rev. E 90 032922
Google Scholar
[143] Yang Y, Yan Z, Malomed B A 2015 Chaos 25 103112
Google Scholar
[144] Chowdury A, Kedziora D J, Ankiewicz A, et al. 2015 Phys. Rev. E 91 032928
Google Scholar
[145] Ankiewicz A, Kedziora D J, Chowdury A, et al. 2016 Phys. Rev. E 93 012206
Google Scholar
[146] Wang L, Zhang J H, Wang Z Q, et al. 2016 Phys. Rev. E 93 012214
Google Scholar
[147] Zhao L C, Ling L, Yang Z Y 2018 Phys. Rev. E 97 022218
Google Scholar
[148] Duan L, Yang Z Y, Gao P, et al. 2019 Phys. Rev. E 99 012216
Google Scholar
[149] Wen X Y, Yan Z, Boris A, Malomed 216 Chaos 26 123110
[150] Wen X Y, Yan Z 2018 J. Math. Phys. 59 073511
Google Scholar
[151] Wen X Y, Yan Z 2017 Commun. Nonlinear. Sci. Numer. Simul. 43 311
Google Scholar
[152] Ohta Y, Yang J 2012 Phys. Rev. E 86 036604
Google Scholar
[153] Yang B, Chen Y 2018 Appl. Math. Lett. 82 43
Google Scholar
[154] Li M, Xu T, Meng D 2016 J. Phys. Soc. Jpn. 85 124001
Google Scholar
[155] Xu T, Li H, Zhang H, et al. 2017 Appl. Math. Lett. 63 88
Google Scholar
[156] Dai C Q, Zhu H P 2013 J. Opt. Soc. Am. B 30 3291
Google Scholar
[157] Chen J, Chen Y, Feng B F, Maruno K 2015 Phys. Lett. A 379 1510
Google Scholar
[158] Zhang X, Chen Y, Tang X 2018 Comput. Math. Appl. 76 1938
Google Scholar
[159] Qian C, Rao J G, Liu Y B, He J S 2016 Chin. Phys. Lett. 33 110201
Google Scholar
[160] Zhang X, Chen Y 2017 Commun. Nonlinear. Sci. Numer. Simul. 52 24
Google Scholar
[161] Liu Y K, and Li B 2017 Chin. Phys. Lett. 34 010202
Google Scholar
[162] Charalampidis E G, Wang W, Kevrekidis P G, Frantzeskakis D J, Cuevas-Maraver J 2016 Phys. Rev. A 93 063623
Google Scholar
[163] Wang W, Kevrekidis P G, Carretero-Gonzalez R, Frantzeskakis D J 2016 Phys. Rev. A 93 023630
Google Scholar
[164] Rao J, Porsezian K, He J S 2017 Chaos 27 083115??
Google Scholar
[165] Rao J, Porsezian K, He J S, Kanna T 2018 Proc. R. Soc. A 474 20170627
[166] Zeng L, Zeng J, Kartashov Y V, Malomed B A 2019 Opt. Lett. 44 1206
Google Scholar
Catalog
Metrics
- Abstract views: 11840
- PDF Downloads: 332
- Cited By: 0