-
不耐烦情绪是一种因人而异的心理因素, 且随环境实时变化. 本研究构建了基于元胞自动机的行人微观模型, 并用其研究了双向行人流在不耐烦行为决策影响下的动态特征. 模型定义了潜在势能场表达行人对可用空间的占用倾向, 合理体现双向流行人决策的前摄效应. 提出在行人运动过程中, 根据瞬时状态测量、记录和更新行人个体不耐烦水平的方法, 并以此触发个性化行为. 对比研究了3种不同的不耐烦行为模式的作用效果. 仿真试验结果显示, 与不考虑不耐烦行为相比, 当不耐烦水平用于触发横跨行为时, 双向流在速度、流率和等待时间方面的表现均有改善; 当不耐烦用于直接计算行人对有限空间的竞争力时, 这3项指标则在大部分密度水平下均呈恶化. 针对不耐烦作用强度与决策阈值的参数灵敏度分析显示了模型在不耐烦作用表现方面的灵活性. 同时, 分场景的仿真试验还揭示了低比例慢速行人、步道宽度及混合行为模式等对双向流效率的作用.Impatience is a psychological factor that varies from person to person and constantly changes with the environment in real time. In this paper, a model based on cellular automaton is presented to investigate the dynamics of bi-directional flow, with considering individual impatient behaviors. Potential field is defined to represent pedestrian’s interest in available space, which provides an approach to the description of proactive mechanism in bi-directional flow. By formulating the dynamics with controllable parameters, individual impatience level is measured, recorded and updated to trigger off the personalized behaviors. Three different patterns of impatient behaviors are modeled and compared with each other. Simulation results demonstrate the different performances of impatient behavior patterns. Comparing with the situation without considering impatience, bidirectional flow is improved in terms of speed, flow rate and waiting time when impatience level is used to triggers off the sidestep behavior. However, the collective performance shows a deterioration at a most density level when impatience is regarded as a direct parameter to estimate the priority to a target cell among several competitors. The parameter sensitivity analysis of impatience intensity and decision threshold shows the flexibility of the model to present the impatience effect. Simulation experiments under different scenarios also reveal the effects of low proportion of slower pedestrians, walkway width and mixed behavior mode on the efficiency of pedestrian counter flow.
-
Keywords:
- cellular automaton /
- bidirectional pedestrian flow /
- fundamental diagram /
- impatient behavior
[1] Lam W H K, Cheung C Y 2000 Journal of Transportation Engineering-asce 126 343Google Scholar
[2] Lam W H K, Lee J Y S, Cheung C Y 2002 Transportation 29 169Google Scholar
[3] Corbetta A, Meeusen J, Lee C M, Toschi F 2016 In Pedestrian and Evacuation Dynamics (He Fei: University of Science and Technology of China Press) pp18–24
[4] Kretz T, Gr A, Kaufman M, Mazur F, Schreckenberg M 2006 J. Stat. Mech:Theory Exp. 10 10001Google Scholar
[5] Helbing D, Buzna L, Johansson A, Werner T 2005 Transp. Sci. 39 1Google Scholar
[6] Zhang J, Klingsch W, Schadschneider A, Seyfried A 2012 J. Stat. Mech:Theory Exp. 2 P02002Google Scholar
[7] Xue S Q, Jiang R, Jia B, Wang Z Y, Zhang X 2019 Transp. B Transp. Dyn. 7 169Google Scholar
[8] Jiang Y Q, Wong S C, Zhang P, Liu R X, Duan Y L, Choi K 2012 APPLIED MATHEMATICS AND COMPUTATION 218 6135Google Scholar
[9] Hoogendoorn S P, Wageningen-Kessels F L, van Daamen W, Duives D C 2014 Physica A 416 684Google Scholar
[10] Nagai R, Fukamachi M, Nagatani T 2005 Physica A 358 516Google Scholar
[11] Blue V J, Adler J L 2001 Transp. Res. Part B 35 293Google Scholar
[12] Helbing D, Molnar P 1995 Phys. Rev. E 51 4282Google Scholar
[13] Nagatani T 2009 Phys. Lett. A 373 2917Google Scholar
[14] Nowak S, Schadschneider A 2012 Phys. Rev. E 85 066128Google Scholar
[15] Nagatani T 2012 Appl. Math. Modell. 36 702Google Scholar
[16] 李明华, 袁振洲, 许琰, 田钧方 2015 64 018903Google Scholar
Li M H, Yuan Z Z, Xu Y, Tian J F 2015 Acta Phys. Sin. 64 018903Google Scholar
[17] Feliciani C, Nishinari K 2016 Phys. Rev. E 94 032304Google Scholar
[18] Alonso-Marroquín F, Busch J, Chiew C, Lozano C, Ramírez-Gómez Á 2014 Phys. Rev. E 90 063305Google Scholar
[19] Kwak J, Jo H H, Luttinen T, Kosonen I 2017 Phys. Rev. E 96 022319Google Scholar
[20] Feliciani C, Nishinari K 2016 Physica A 451 135Google Scholar
[21] Jin C J, Jiang R, Yin J L, Dong L Y, Li D W 2017 Physica A 482 666Google Scholar
[22] Fu L B, Song W G, Lo S M 2016 Nonlinear Sci. Numer. Simul. 42 682Google Scholar
[23] Haghani M, Sarvi M, Shahhoseini Z 2019 Transp. Res. Part A 122 51Google Scholar
[24] Fu Z J, Zhou X D, Zhu K J, Chen Y Q, Zhuang Y F, Hu Y Q, Yang L Z, Chen C K, Li J 2015 Physica A 420 294Google Scholar
[25] Weng W G, Chen T, Yuan H Y, Fan W C 2006 Phys. Rev. E 74 036102Google Scholar
[26] Fu Z J, Zhou X D, Chen Y Q, Gong J H, Peng F, Yan Z D, Zhang T L, Yang L Z 2014 Commun. Nonlinear Sci. Numer. Simul. 20 832Google Scholar
[27] Zhang D W, Zhu H T, Hostikka S, Qiu S 2019 Physica A 525 72Google Scholar
[28] 武鑫森, 岳昊, 刘秋梅, 张旭, 邵春福 2021 70 068901Google Scholar
Wu X S, Yue H, Liu Q M, Zhang X, Shao C F 2021 Acta Phys. Sin. 70 068901Google Scholar
[29] Tang T, Huang H, Shang H 2012 Nonlinear Dyn. 67 437Google Scholar
[30] Lü Y X, Wu Z X, Guan J Y 2020 Phys. Rev. Res. 2 043250Google Scholar
[31] 杨灿, 陈群, 陈璐 2019 68 240504Google Scholar
Yang C, Chen Q, Chen L 2019 Acta Phys. Sin. 68 240504Google Scholar
[32] Kirchner A, Nishinari K, Schadschneider A 2003 Phys. Rev. E 67 056122Google Scholar
[33] Hidalgo R C, Parisi D R, Zuriguel I 2017 Phys. Rev. E 95 042319Google Scholar
[34] Helbing D, Farkas I J, Vicsek T 2000 Nature 407 487Google Scholar
[35] Pastor J M, Garcimartín A, Gago P A, Peralta J P, Martín-Gómez C, Ferrer L M, Maza D, Parisi D R, Pugnaloni L A, Zuriguel I 2015 Phys. Rev. E 92 062817Google Scholar
[36] Suma Y, Yanagisawa D, Nishinari K 2012 Physica A 391 248Google Scholar
[37] 金辉, 郭仁拥 2019 68 020501Google Scholar
Jin H, Guo R Y 2019 Acta Phys. Sin. 68 020501Google Scholar
[38] Ma Y P, Zhang H 2020 Chin. Phys. B 29 038901Google Scholar
[39] Degond P, Appert-Rolland C, Moussaïd M, Pettré J, Theraulaz G 2013 J. Stat. Phys. 152 1033Google Scholar
[40] Shi M, Eric W L M, Ma Y, Cao R F 2019 Transp. B Transp. Dyn. 7 1651Google Scholar
[41] Shi M, Eric W L M, Ma Y 2019 Simul. Modell. Pract. Theory 94 367Google Scholar
[42] Yu Y F, Song W G 2007 Phys. Rev. E 75 046112Google Scholar
[43] Yanagisawa D, Kimura A, Tomoeda A, Nishi R, Suma Y, Ohtsuka K, Nishinari K 2009 Phys. Rev. E 80 036110Google Scholar
[44] Wilensky U http://ccl.northwestern.edu/netlogo/index.shtml [2021-8-20]
-
图 5 3种不耐烦行为模式 (a) 模式1, 不耐烦作为回避的触发因素(R不耐烦水平i > δ); (b) 模式2, 不耐烦作为估计优先权的直接参数(目标格子有4名潜在竞争者, 其中, L的不耐烦水平i 最高且大于δ); (c) 模式3, 不耐烦作为估计优先级的间接参数(R的i × Ui, j最高且不耐烦水平i大于δ)
Fig. 5. Three patterns of impatient behaviors: (a) Pattern 1, impatience as a trigger of sidestep (i of R > δ); (b) Pattern 2, impatience as a direct parameter to estimate priority (4 potential competitors for the target cell, L has the largest i (i of L > δ) among all of the potential competitors for the target cell); (c) Pattern 3, impatience as an indirect parameter to estimate priority (R has the largest i × Ui, j (i of R > δ) among all of the potential competitors for the target cell).
图 12 不同 α 和 γ 下的速度和等待时间随密度的变化趋势 (a) 模式1的速度; (b) 模式1的等待时间; (c) 模式2的速度; (d) 模式2的等待时间; (e) 模式3的速度; (f) 模式3的等待时间
Fig. 12. Speed and wait time vs. density under different α and γ: (a) Speed with Pattern 1; (b) wait time with Pattern 1; (c) speed with Pattern 2; (d) wait time with Pattern 2; (e) speed with Pattern 3; (f) wait time with Pattern 3
表 1 参数及其物理意义
Table 1. Some parameters and the corresponding physical meanings.
符号 物理意义 $ U_{i, j}^d $ 行走方向为d的行人向格子(i, j)移动的转移概率, d表示“右向左”或“左向右” $ E_{i, j}^d $, $ E_{i, j}^{\bar d} $ 取决于方向d或 $ \overline {\boldsymbol{d}} $ 行人的格子(i, j)的潜在势能场值, 当d表示“右向左”, 则$ \overline {\boldsymbol{d}} $表示“左向右”, 反之亦然 $ E_{i, j}^{\rm{l}} $, $ E_{i, j}^{\rm{r}} $ 取决于“右向左”或“左向右”行人的格子(i, j)的潜在势能场值, $ E_{i, j}^{\rm{l}} $表示“左向右”, $ E_{i, j}^{\rm{r}} $表示“右向左” T 时间步 k 行人前进方向上前方k个格子(即受影响格子) β 潜在势能场值的衰减率, 0 ≤ β ≤ 1 i 行人的不耐烦水平 α 不耐烦水平增长率, α ≥ 1 γ 不耐烦水平衰减率, 0 ≤ γ ≤ 1 δ 影响决策的不耐烦水平阈值, δ ≥ 0 表 2 不考虑不耐烦情况下“右向左”行人R的基本运动规则
Table 2. Basic movement rules a pedestrian of Rights without considering impatience.
Step 1: 比较$ {U_{{{ - 1, 0}}}} $, $ {U_{{{ - 1, 1}}}} $ 和 $ {U_{{{ - 1, - 1}}}} $, 具备最大$ {U_{i, j}} $ 值的空闲格子(i, j)被选为目标格子, 转Step 2; 如果3个格子均无空闲,
跳转至Step 4;Step 2: 将当前格子的$ {E^{\rm{r}}} $值$ E_{{{0, 0}}}^{\rm{r}} $ 设为 $ E_{0, 0}^{\rm{r}} $ + 1, 转Step 3; Step 3: 移向目标格子, 转Step 5; Step 4: 停留在当前格子, 将右前格子的$ E_{ - 1, 1}^{\rm{r}} $设为 $ E_{ - 1, 1}^{\rm{r}} $ + 1, 将左前格子的$ E_{ - 1, - 1}^{\rm{r}} $设为 $ E_{ - 1, - 1}^{\rm{r}} $ + 1, 转Step 6; Step 5: 将走行方向上前k个格子的 $ E_{ - k, 0}^{\rm{r}} $设为$ E_{ - k, 0}^{\rm{r}} $ + 1, 转 Step 6; Step 6: 将所有空闲格子的$ {E^{\rm{r}}} $设为$ {E^{\rm{r}}} $ × β. 对于“左向右”行人, $ {E^{\rm{l}}} $的更新规则类似. 当多人选择同一目标格子时, 随机选择一人移动. 表 3 模式1的规则
Table 3. Rules of Pattern 1.
Step 1: 比较前进方向3个格子的$ {U_{{{ - 1, 0}}}} $, $ {U_{{{ - 1, 1}}}} $ 和 $ {U_{{{ - 1, - 1}}}} $, 具备最大$ {U_{i, j}} $的空闲格子 (i, j) 被选为目标格子, 转Step 2; 如果3个格子
均非空且i > δ, 跳转Step 7; 否则, 跳转 Step 4;Step 2—Step 6: 与表2规则中的Step 2—Step 6 相同; Step 7: 比较左右横向格子的$ {U_{{{0, 1}}}} $ 和 $ {U_{{{0, - 1}}}} $, 具备最大$ {U_{i, j}} $的空闲格子 (i, j) 被选为目标格子, 转Step 2; 如果两个格子均非空, 跳转
Step 4.表 4 模式2的规则
Table 4. Rules of Pattern 2.
Step 1: 比较前进方向3个格子的$ {U_{{{ - 1, 0}}}} $, $ {U_{{{ - 1, 1}}}} $ 和 $ {U_{{{ - 1, - 1}}}} $, 具备最大$ {U_{i, j}} $的空闲格子 (i, j) 被选为目标格子, 判断该行人是否在竞
争者中具备最大i (i > δ), 是转Step 2, 否跳转Step 7; 如果3个格子均非空, 跳转 Step7;Step 2—Step 6: 与表2规则中的 Step 2—Step 6 相同; Step 7: 依次针对该行人周边的空闲格子判断该行人是否在竞争者中具备最大i (i > δ), 是则对应的格子选为目标格子, 转Step 2; 否跳
转 Step 4.表 5 模式3的规则
Table 5. Rules of Pattern 3.
Step 1: 比较前进方向3个格子的$ {U_{{{ - 1, 0}}}} $, $ {U_{{{ - 1, 1}}}} $和 $ {U_{{{ - 1, - 1}}}} $, 具备最大$ {U_{i, j}} $(i ≤ δ) 或 $ {U_{i, j}} \times i $(i > δ)的空闲格子 (i, j) 被选为目标格
子, 判断该行人是否在竞争者中具备最大的$ {U_{i, j}} $(i ≤ δ) 或 $ {U_{i, j}} \times i $(i > δ), 是转Step 2, 否跳转Step 7; 如果3个格子均非空,
跳转Step 7;Step 2—Step 6: 与表2规则中的Step 2—Step 6 相同; Step 7: 依次针对该行人周边的空闲格子判断该行人是否在竞争者中具备最大$ {U_{i, j}} $(i ≤ δ) 或 $ {U_{i, j}} \times i $ (i > δ), 是则对应的格子选为
目标格子, 转Step 2; 否跳转 Step 4.表 6 统计指标及其含义
Table 6. Definitions of statistic index.
指标 含义 计算方法 Speed 速度 每一时间步向前进方向3个邻居格子(正前、左前、右前)移动的人数比总计人数 Flow rate 流率 每一时间步移动穿过右侧边界的“左向右”行人数量与移动穿过左侧边界的“右向左”行人数量之和 Waiting time 等待时间 行人原地停滞等待的时间步之和比总计人数 -
[1] Lam W H K, Cheung C Y 2000 Journal of Transportation Engineering-asce 126 343Google Scholar
[2] Lam W H K, Lee J Y S, Cheung C Y 2002 Transportation 29 169Google Scholar
[3] Corbetta A, Meeusen J, Lee C M, Toschi F 2016 In Pedestrian and Evacuation Dynamics (He Fei: University of Science and Technology of China Press) pp18–24
[4] Kretz T, Gr A, Kaufman M, Mazur F, Schreckenberg M 2006 J. Stat. Mech:Theory Exp. 10 10001Google Scholar
[5] Helbing D, Buzna L, Johansson A, Werner T 2005 Transp. Sci. 39 1Google Scholar
[6] Zhang J, Klingsch W, Schadschneider A, Seyfried A 2012 J. Stat. Mech:Theory Exp. 2 P02002Google Scholar
[7] Xue S Q, Jiang R, Jia B, Wang Z Y, Zhang X 2019 Transp. B Transp. Dyn. 7 169Google Scholar
[8] Jiang Y Q, Wong S C, Zhang P, Liu R X, Duan Y L, Choi K 2012 APPLIED MATHEMATICS AND COMPUTATION 218 6135Google Scholar
[9] Hoogendoorn S P, Wageningen-Kessels F L, van Daamen W, Duives D C 2014 Physica A 416 684Google Scholar
[10] Nagai R, Fukamachi M, Nagatani T 2005 Physica A 358 516Google Scholar
[11] Blue V J, Adler J L 2001 Transp. Res. Part B 35 293Google Scholar
[12] Helbing D, Molnar P 1995 Phys. Rev. E 51 4282Google Scholar
[13] Nagatani T 2009 Phys. Lett. A 373 2917Google Scholar
[14] Nowak S, Schadschneider A 2012 Phys. Rev. E 85 066128Google Scholar
[15] Nagatani T 2012 Appl. Math. Modell. 36 702Google Scholar
[16] 李明华, 袁振洲, 许琰, 田钧方 2015 64 018903Google Scholar
Li M H, Yuan Z Z, Xu Y, Tian J F 2015 Acta Phys. Sin. 64 018903Google Scholar
[17] Feliciani C, Nishinari K 2016 Phys. Rev. E 94 032304Google Scholar
[18] Alonso-Marroquín F, Busch J, Chiew C, Lozano C, Ramírez-Gómez Á 2014 Phys. Rev. E 90 063305Google Scholar
[19] Kwak J, Jo H H, Luttinen T, Kosonen I 2017 Phys. Rev. E 96 022319Google Scholar
[20] Feliciani C, Nishinari K 2016 Physica A 451 135Google Scholar
[21] Jin C J, Jiang R, Yin J L, Dong L Y, Li D W 2017 Physica A 482 666Google Scholar
[22] Fu L B, Song W G, Lo S M 2016 Nonlinear Sci. Numer. Simul. 42 682Google Scholar
[23] Haghani M, Sarvi M, Shahhoseini Z 2019 Transp. Res. Part A 122 51Google Scholar
[24] Fu Z J, Zhou X D, Zhu K J, Chen Y Q, Zhuang Y F, Hu Y Q, Yang L Z, Chen C K, Li J 2015 Physica A 420 294Google Scholar
[25] Weng W G, Chen T, Yuan H Y, Fan W C 2006 Phys. Rev. E 74 036102Google Scholar
[26] Fu Z J, Zhou X D, Chen Y Q, Gong J H, Peng F, Yan Z D, Zhang T L, Yang L Z 2014 Commun. Nonlinear Sci. Numer. Simul. 20 832Google Scholar
[27] Zhang D W, Zhu H T, Hostikka S, Qiu S 2019 Physica A 525 72Google Scholar
[28] 武鑫森, 岳昊, 刘秋梅, 张旭, 邵春福 2021 70 068901Google Scholar
Wu X S, Yue H, Liu Q M, Zhang X, Shao C F 2021 Acta Phys. Sin. 70 068901Google Scholar
[29] Tang T, Huang H, Shang H 2012 Nonlinear Dyn. 67 437Google Scholar
[30] Lü Y X, Wu Z X, Guan J Y 2020 Phys. Rev. Res. 2 043250Google Scholar
[31] 杨灿, 陈群, 陈璐 2019 68 240504Google Scholar
Yang C, Chen Q, Chen L 2019 Acta Phys. Sin. 68 240504Google Scholar
[32] Kirchner A, Nishinari K, Schadschneider A 2003 Phys. Rev. E 67 056122Google Scholar
[33] Hidalgo R C, Parisi D R, Zuriguel I 2017 Phys. Rev. E 95 042319Google Scholar
[34] Helbing D, Farkas I J, Vicsek T 2000 Nature 407 487Google Scholar
[35] Pastor J M, Garcimartín A, Gago P A, Peralta J P, Martín-Gómez C, Ferrer L M, Maza D, Parisi D R, Pugnaloni L A, Zuriguel I 2015 Phys. Rev. E 92 062817Google Scholar
[36] Suma Y, Yanagisawa D, Nishinari K 2012 Physica A 391 248Google Scholar
[37] 金辉, 郭仁拥 2019 68 020501Google Scholar
Jin H, Guo R Y 2019 Acta Phys. Sin. 68 020501Google Scholar
[38] Ma Y P, Zhang H 2020 Chin. Phys. B 29 038901Google Scholar
[39] Degond P, Appert-Rolland C, Moussaïd M, Pettré J, Theraulaz G 2013 J. Stat. Phys. 152 1033Google Scholar
[40] Shi M, Eric W L M, Ma Y, Cao R F 2019 Transp. B Transp. Dyn. 7 1651Google Scholar
[41] Shi M, Eric W L M, Ma Y 2019 Simul. Modell. Pract. Theory 94 367Google Scholar
[42] Yu Y F, Song W G 2007 Phys. Rev. E 75 046112Google Scholar
[43] Yanagisawa D, Kimura A, Tomoeda A, Nishi R, Suma Y, Ohtsuka K, Nishinari K 2009 Phys. Rev. E 80 036110Google Scholar
[44] Wilensky U http://ccl.northwestern.edu/netlogo/index.shtml [2021-8-20]
计量
- 文章访问数: 4230
- PDF下载量: 68
- 被引次数: 0