-
To analyze the dependence of the DC stress negative bias temperature instability (NBTI) effect on basic device paraments, such as the channel length, the gate oxide thickness, the doping concentration, we solve the hydrogen molecule drift-diffusion model of NBTI together with the semiconductor device equations. The results are compared with the existing experimental data and the basic laws and physics of devices, which is necessary for reliability studies of NBTI. The analysis results show that NBTI effect is not affected by the channel length change, but maily by the thickness of the gate oxide layer. Gate oxide thickness thinning and gate oxide layer electric field enhancement effect are consistent, which determines the device degradation in the manner of exponential law. With channel doping concentration increasing, NBTI effect will be reduced, which is because the device channel surface hole concentration is reduced, however with the doping concentration increases to such a value that the device source drain leakage current is very low (low leakage device), the MBTI effect is obviously enhanced. These are helpful for understanding NBTI and designing the high performance device.
-
Keywords:
- pMOSFET /
- negative bias temperature instability /
- technology computer aided design /
- reaction-diffusion model
[1] Schroder D K, Babcock J A 2003 J. Appl. Phys. 94 1
[2] Mahapatra S, Alam M A, Bharath P 2005 Microelectr. Eng. 80 114
[3] Huard V, Denais M, Parthasarathy C 2006 Microelectr. Reliab. 46 1
[4] Alam M A, Kufluoglu H, Varghese D, Mahapatra S 2007 Microelectr. Reliab. 47 853
[5] Mahapatra S, Islam A E, Deora S, Maheta V D, Joshi K, Jain A, Alam M A 2011 Proceedings of IEEE International Reliability Physics Symposium United States, April 10-14, 2011 p6A.3.1
[6] Kumar S V, Kim C H, Sapatnekar S S 2009 IEEE Trans. Dev. Mater. Rel. 9 537
[7] Alam M A, Mahapatra S 2005 Microelectr. Reliab. 45 71
[8] Kufluoglu H, Alam M A 2007 IEEE Trans. Electron Dev. 54 1101
[9] Kufluoglu H, Alam M A 2006 IEEE Trans. Electron. Dev. 53 1120
[10] Hao Y, Liu H X 2008 Reliability and Effecticenese Mechanism in Micro Manometer MOS Device (Beijing: Science Press) pp265, 230, 232 (in Chinese) [郝跃, 刘红霞 2008 微纳米MOS器件可靠性与实效机理 (北京: 科学出版社) 第265, 230, 232页]
[11] Bénard C, Math G, Fornara P, Ogier J, Goguenheim D 2009 Microelectr. Reliab. 49 1008
[12] Islam A E, Kufluoglu H, Varghese D, Mahapatra S, Alam M A 2007 IEEE Trans. Electron Dev. 54 2143
[13] Krishnan A T, Chancellor C, Chakravarthi S, Nicollian P E, Reddy V, Varghese A, Khamankar R B, Krishnan S, Levitov L 2005 Proceedings of International Electron Devices Meeting United States, December 5-7, 2005 p688
[14] Grasser T, Entner R, Triebl O, Enichlmair H, Minixhofer R 2006 International Conference on Simulation of Semiconductor Processes and Devices United States, September 5-7 2006 p330
[15] Chuang C T 2009 Proceedings of IEEE International Symposium on Circuit and Systems Taiwan, China, May 24-27 2009 p2305
[16] Reisinger H, Blank O, Heinrigs W, Muhlhoff A, Gustin W, Schlunder C 2006 Proceedings of IEEE International Reliability Physics Symposium United States, March 26-30, 2006 p448
[17] Stathis J H, Zafar S 2006 Microelectr. Reliab. 46 270
[18] Liu H X, Hao Y 2007 Chin. Phys. 16 2111
-
[1] Schroder D K, Babcock J A 2003 J. Appl. Phys. 94 1
[2] Mahapatra S, Alam M A, Bharath P 2005 Microelectr. Eng. 80 114
[3] Huard V, Denais M, Parthasarathy C 2006 Microelectr. Reliab. 46 1
[4] Alam M A, Kufluoglu H, Varghese D, Mahapatra S 2007 Microelectr. Reliab. 47 853
[5] Mahapatra S, Islam A E, Deora S, Maheta V D, Joshi K, Jain A, Alam M A 2011 Proceedings of IEEE International Reliability Physics Symposium United States, April 10-14, 2011 p6A.3.1
[6] Kumar S V, Kim C H, Sapatnekar S S 2009 IEEE Trans. Dev. Mater. Rel. 9 537
[7] Alam M A, Mahapatra S 2005 Microelectr. Reliab. 45 71
[8] Kufluoglu H, Alam M A 2007 IEEE Trans. Electron Dev. 54 1101
[9] Kufluoglu H, Alam M A 2006 IEEE Trans. Electron. Dev. 53 1120
[10] Hao Y, Liu H X 2008 Reliability and Effecticenese Mechanism in Micro Manometer MOS Device (Beijing: Science Press) pp265, 230, 232 (in Chinese) [郝跃, 刘红霞 2008 微纳米MOS器件可靠性与实效机理 (北京: 科学出版社) 第265, 230, 232页]
[11] Bénard C, Math G, Fornara P, Ogier J, Goguenheim D 2009 Microelectr. Reliab. 49 1008
[12] Islam A E, Kufluoglu H, Varghese D, Mahapatra S, Alam M A 2007 IEEE Trans. Electron Dev. 54 2143
[13] Krishnan A T, Chancellor C, Chakravarthi S, Nicollian P E, Reddy V, Varghese A, Khamankar R B, Krishnan S, Levitov L 2005 Proceedings of International Electron Devices Meeting United States, December 5-7, 2005 p688
[14] Grasser T, Entner R, Triebl O, Enichlmair H, Minixhofer R 2006 International Conference on Simulation of Semiconductor Processes and Devices United States, September 5-7 2006 p330
[15] Chuang C T 2009 Proceedings of IEEE International Symposium on Circuit and Systems Taiwan, China, May 24-27 2009 p2305
[16] Reisinger H, Blank O, Heinrigs W, Muhlhoff A, Gustin W, Schlunder C 2006 Proceedings of IEEE International Reliability Physics Symposium United States, March 26-30, 2006 p448
[17] Stathis J H, Zafar S 2006 Microelectr. Reliab. 46 270
[18] Liu H X, Hao Y 2007 Chin. Phys. 16 2111
Catalog
Metrics
- Abstract views: 8041
- PDF Downloads: 542
- Cited By: 0