Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High energetic electron bunches from lasernear critical density layer interaction

Wang Jian Cai Da-Feng Zhao Zong-Qing Gu Yu-Qiu

Citation:

High energetic electron bunches from lasernear critical density layer interaction

Wang Jian, Cai Da-Feng, Zhao Zong-Qing, Gu Yu-Qiu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we report our results from interactions between sub-picosecond laser and relativistic near-critical density plasma layer. To create the near-critical density plasma layer, low density foam targets are utilized in our experiments. The foam is comprised of tri-cellulose acetate. Their average densities vary from 1 mg/cm3 to 5 mg/cm3, corresponding to full ionization densities ranging from 0.6nc to 3nc. When laser pulse is incident on the near-critical density plasma, some energetic bunches with a large quantity of charges are measured in most of the shots. The maximum charge quantity reaches to 6.1 nC/sr. Furthermore, the observed electron energy spectrum is Boltzmann-like with a wide plateau at the tail of the energy spectrum, rather than a Maxwell-like. The concept of average temperature is not available any more, and we define average effective temperature instead, namely the slope temperature. Fitting the Boltzmann-like spectrum exponentially, we find that the average effective temperature even exceeds 8 MeV at 7.51019 W/cm2, far beyond the ponderomotive limit. Aiming at analyzing the implication of physics, several two-dimensional particle-in-cell (PIC) simulations are performed. The PIC simulations indicate that the hole-boring effect and relativistic self-transparency play an important role in the electrons heating process. At the earlier stage of heating process, a short plasma channel is created by the hole-boring effect and relativistic self-transparency. The length and the width of the plasma channel are about tens of micrometers and several micrometers respectively. Around the plasma channel, there is an intensive azimuthal magnetic field. The magnitude of the azimuthal magnetic field is 100 MGs. However, the radical electrostatic field is not seen. The possible reason is that the plasma channel would be cavitated by the hole-boring effect. As a result, the electrons will experience Betatron resonance in the magnetized plasma channel. The traverse momentum of the electron would be converted into forward momentum. Assisted by the Betatron resonance, the electrons gain energies from the laser directly and efficiently. Thus, the average effective temperatures of the electron bunches are much higher than predicted by the ponderomotive scaling law. Besides, we also conducte another simulation to instigate the differences by adopting different laser polarizations. Within our expectation, the electron spectrum of the P-polarization accords well with the experimental result, while the electron spectrum of the S-polarization obviously deviates from the experimental result. It also demonstrates that the Betatron resonance heating dominates the electron acceleration process. This research paves the way to generating the highly energetic bunches with a large quantity of charges, and wound also be helpful for producing the high-bright laser bremsstrahlung sources in future.
      Corresponding author: Cai Da-Feng, dafeng_cai@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375161, 11605095).
    [1]

    Jarrott L C, Kemp A J, Divol L, Mariscal D, Westover B, McGuffey C, Beg F N, Suggit M, Chen C, Hey D, Maddox B, Hawreliak J, Park H S, Remington B, Wei M S, MacPhee A 2014 Phys. Plsamas 21 031211

    [2]

    Westover B, MacPhee A, Chen C, Hey D, Ma T, Maddox B, Park H S, Remington B, Beg F N 2010 Phys. Plsamas 17 082703

    [3]

    Kulcsr G, AlMawlawi D, Budnik F W 2000 Phys. Rev. Lett. 84 5149

    [4]

    Nodera Y, Kawata S, Onma N 2008 Phys. Rev. E 78 046401

    [5]

    Hu G Y, Lei A L, et al. 2010 Phys. Plasmas 17 083102

    [6]

    Huang K, Li D Z, Yan W C, Li M H, Tao M Z, Chen Z Y, Ge X L, Liu F, Ma Y, Zhao J R, Hafz N M, Zhang J, Chen L M 2014 Appl. Phys. Lett. 105 204101

    [7]

    Cao L H, Gu Y Q, Zhao Z Q 2010 Phys. Plasmas 17 043103

    [8]

    Haines M G, Wei M S, Beg F N, Stephens R B 2009 Phys. Rev. Lett. 102 045008

    [9]

    Wilks S C, Kruer W L, Tabak M 1992 Phys. Rev. Lett. 69 1383

    [10]

    Glinec Y, Faure J, Le Dain L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F 2005 Phys. Rev. Lett. 94 025003

    [11]

    Cipiccia S, Islam M, Ersfeld B, Shanks R P, Brunetti E, Vieux G, Yang X, Issac R C, Wiggins S, Welsh G H, Anania M P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M, Jaroszynski D A 2011 Nature Phys. 7 867

    [12]

    Courtois C, Edwards R, Compant La Fontaine A, Aedy C, Barbotin M, Bazzoli S, Biddle L, Brebion D, Bourgade J L, Drew D, Fox M, Gardner M, Gazave J M, Lagrange J, Landoas O, Le Dain L, Lefebvre E, Mastrosimone D, Pichoff N, Pien G, Ramsay M, Simons A, Sircombe N, Stoeck C, Thorp K 2011 Phys. Plsamas 18 023101

    [13]

    Kalmykov S Y, Gorburov L M, Mora P 2005 Phys. Plasmas 12 033101

    [14]

    Pukhov A, Gordienko S 2006 Phil. Trans. R. Soc. A 364 623

    [15]

    Lu W, Huang C, Zhou M 2006 Phys. Plasmas 13 056709

    [16]

    Esaresy E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229

    [17]

    Atzeni S, Meyer-ter-Vehn J 2008 The Physics of Inertial Fusion (in Chinese) (Beijing:Science Press)[Atzeni S, Meyer-ter-Vehn J 2008惯性聚变物理(北京:科学出版社)]

    [18]

    Kruer W L, Estabrook K 1985 Phys. Fluids 28 430

    [19]

    Scott R H H, Perez F, Santos J J, Ridgers C P, Davies J R, Lancaster K L, Baton S D, Nicolai Ph, Trines R M G M, Bell A R, Hulin S, Tzoufras M, Rose S J, Norreys P A 2012 Phys. Plasmas 19 053104

    [20]

    Pukhov A, Sheng Z M, Meyer-Ter-Vehn J 1999 Phys. Plasmas 6 2847

    [21]

    Willingale L, Nagel S R, Thomas A G R, Bellei C, Clarke R J, Dangor A E, Heathcote R, Kaluza M C, Kamperidis C, Kneip S, Krushelnick K, Lopes N, Mangles S P D, Nazarov W, Nilson P M, Najmudin Z 2009 Phys. Rev. Lett. 102 105002

    [22]

    Kemp A, Sentoku Y, Tabak M 2008 Phys. Rev. Lett. 101 075004

    [23]

    Kemp A, Sentoku Y, Tabak M 2009 Phy. Rev. E 79 066406

    [24]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847

  • [1]

    Jarrott L C, Kemp A J, Divol L, Mariscal D, Westover B, McGuffey C, Beg F N, Suggit M, Chen C, Hey D, Maddox B, Hawreliak J, Park H S, Remington B, Wei M S, MacPhee A 2014 Phys. Plsamas 21 031211

    [2]

    Westover B, MacPhee A, Chen C, Hey D, Ma T, Maddox B, Park H S, Remington B, Beg F N 2010 Phys. Plsamas 17 082703

    [3]

    Kulcsr G, AlMawlawi D, Budnik F W 2000 Phys. Rev. Lett. 84 5149

    [4]

    Nodera Y, Kawata S, Onma N 2008 Phys. Rev. E 78 046401

    [5]

    Hu G Y, Lei A L, et al. 2010 Phys. Plasmas 17 083102

    [6]

    Huang K, Li D Z, Yan W C, Li M H, Tao M Z, Chen Z Y, Ge X L, Liu F, Ma Y, Zhao J R, Hafz N M, Zhang J, Chen L M 2014 Appl. Phys. Lett. 105 204101

    [7]

    Cao L H, Gu Y Q, Zhao Z Q 2010 Phys. Plasmas 17 043103

    [8]

    Haines M G, Wei M S, Beg F N, Stephens R B 2009 Phys. Rev. Lett. 102 045008

    [9]

    Wilks S C, Kruer W L, Tabak M 1992 Phys. Rev. Lett. 69 1383

    [10]

    Glinec Y, Faure J, Le Dain L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F 2005 Phys. Rev. Lett. 94 025003

    [11]

    Cipiccia S, Islam M, Ersfeld B, Shanks R P, Brunetti E, Vieux G, Yang X, Issac R C, Wiggins S, Welsh G H, Anania M P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M, Jaroszynski D A 2011 Nature Phys. 7 867

    [12]

    Courtois C, Edwards R, Compant La Fontaine A, Aedy C, Barbotin M, Bazzoli S, Biddle L, Brebion D, Bourgade J L, Drew D, Fox M, Gardner M, Gazave J M, Lagrange J, Landoas O, Le Dain L, Lefebvre E, Mastrosimone D, Pichoff N, Pien G, Ramsay M, Simons A, Sircombe N, Stoeck C, Thorp K 2011 Phys. Plsamas 18 023101

    [13]

    Kalmykov S Y, Gorburov L M, Mora P 2005 Phys. Plasmas 12 033101

    [14]

    Pukhov A, Gordienko S 2006 Phil. Trans. R. Soc. A 364 623

    [15]

    Lu W, Huang C, Zhou M 2006 Phys. Plasmas 13 056709

    [16]

    Esaresy E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229

    [17]

    Atzeni S, Meyer-ter-Vehn J 2008 The Physics of Inertial Fusion (in Chinese) (Beijing:Science Press)[Atzeni S, Meyer-ter-Vehn J 2008惯性聚变物理(北京:科学出版社)]

    [18]

    Kruer W L, Estabrook K 1985 Phys. Fluids 28 430

    [19]

    Scott R H H, Perez F, Santos J J, Ridgers C P, Davies J R, Lancaster K L, Baton S D, Nicolai Ph, Trines R M G M, Bell A R, Hulin S, Tzoufras M, Rose S J, Norreys P A 2012 Phys. Plasmas 19 053104

    [20]

    Pukhov A, Sheng Z M, Meyer-Ter-Vehn J 1999 Phys. Plasmas 6 2847

    [21]

    Willingale L, Nagel S R, Thomas A G R, Bellei C, Clarke R J, Dangor A E, Heathcote R, Kaluza M C, Kamperidis C, Kneip S, Krushelnick K, Lopes N, Mangles S P D, Nazarov W, Nilson P M, Najmudin Z 2009 Phys. Rev. Lett. 102 105002

    [22]

    Kemp A, Sentoku Y, Tabak M 2008 Phys. Rev. Lett. 101 075004

    [23]

    Kemp A, Sentoku Y, Tabak M 2009 Phy. Rev. E 79 066406

    [24]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847

  • [1] Chen Yan-Hong, Wang Zhao, Zhou Ze-Xian, Tao Ke-Wei, Jin Xue-Jian, Shi Lu-Lin, Wang Guo-Dong, Yu Pei, Lei Yu, Wu Xiao-Xia, Cheng Rui, Yang Jie. Diagnosis of bound electron density by measuring energy loss of proton beam in partially ionized plasma target. Acta Physica Sinica, 2024, 73(7): 073401. doi: 10.7498/aps.73.20231736
    [2] Yang Lu, Wang Xiao-Nan, Chen Xin, Chen Peng-Fan, Xia Qian-Wen, Xiong Li, Long Hao-Yu, Li Lin-Yang, Mao Xiao-Bao, Zhou Hai-Long, Zhang Wei-Wei, Lan Xiao-Fei, He Yang-Fan. An enhanced radiation pressure acceleration scheme for accelerating protons using the uniform density plasma channel. Acta Physica Sinica, 2024, 73(11): 115202. doi: 10.7498/aps.73.20240032
    [3] Li Tian-Cheng, Zhang Xiao-Hai, Sheng Zheng-Mao. Surface plasma wave excited by laser pulse obliquely incident on a double-layer plasma target and ts application. Acta Physica Sinica, 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [4] Si Ming-Qi, Wen Zhi-Lin, Zhang Qi-Jin, Dou Yin-Ping, Li Bo-Chao, Song Xiao-Wei, Xie Zhuo, Lin Jing-Quan. Radiation of extreme ultraviolet source and out-of-band from laser-irradiated low-density SnO2 target. Acta Physica Sinica, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [5] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma. Acta Physica Sinica, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [6] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Mechanism of near-forward scattering driven photon acceleration in the interaction between an intense laser and under-dense plasmas. Acta Physica Sinica, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [7] Wu Charles F., Zhao Yao, Weng Su-Ming, Chen Min, Sheng Zheng-Ming. Nonlinear evolution of stimulated scattering near 1/4 critical density. Acta Physica Sinica, 2019, 68(19): 195202. doi: 10.7498/aps.68.20190883
    [8] Zhang Xiao-Hui, Dong Ke-Gong, Hua Jian-Fei, Zhu Bin, Tan Fang, Wu Yu-Chi, Lu Wei, Gu Yu-Qiu. Transverse distribution of electron beam produced by relativistic picosecond laser in underdense plasma. Acta Physica Sinica, 2019, 68(19): 195203. doi: 10.7498/aps.68.20191106
    [9] Li Yao-Jun, Yue Dong-Ning, Deng Yan-Qing, Zhao Xu, Wei Wen-Qing, Ge Xu-Lei, Yuan Xiao-Hui, Liu Feng, Chen Li-Ming. Proton imaging of relativistic laser-produced near-critical-density plasma. Acta Physica Sinica, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [10] Liang Yi-Han, Hu Guang-Yue, Yuan Peng, Wang Yu-Lin, Zhao Bin, Song Fa-Lun, Lu Quan-Ming, Zheng Jian. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [11] Liu Ming-Wei, Gong Shun-Feng, Li Jin, Jiang Chun-Lei, Zhang Yu-Tao, Zhou Bing-Ju. Non-resonant direct laser acceleration in underdense plasma channels. Acta Physica Sinica, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [12] Zhang Zhe, Liu Qian, Qi Zhi-Mei. Study of Au-Ag alloy film based infrared surface plasmon resonance sensors. Acta Physica Sinica, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [13] Zou Shuai, Tang Zhong-Hua, Ji Liang-Liang, Su Xiao-Dong, Xin Yu. Application of floating microwave resonator probe to the measurement of electron density in electronegative capacitively coupled plasma. Acta Physica Sinica, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [14] Gao Bi-Rong, Liu Yue. Numerical study on uniformity of electron cyclotron resonance plasma density. Acta Physica Sinica, 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [15] Ling Wei-Jun, Dong Quan-Li, Zhang Lei, Zhang Shao-Gang, Dong Zhong, Wei Kai-Bin, Wang Shou-Jun, He Min-Qing, Sheng Zheng-Ming, Zhang Jie. Laser driven shock accelerated ion energy spectrumbroadening mechanisms in over-dense plasmas. Acta Physica Sinica, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [16] Chen Zhuo, He Wei, Pu Yi-Kang. Measurement of metastable state densities and electron temperatures in an electron cyclotron resonance argon plasma. Acta Physica Sinica, 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [17] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma. Acta Physica Sinica, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [18] LI YI. THE WAKE FIELD ACCELERATION IN THERMAL PLASMA. Acta Physica Sinica, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [19] ZHANG JIA-TAI, XU LIN-BAO, CHANG TIE-QIANG, ZHANG SHO-GUI, NIE XIAO-BO, WANG SHI-HONG, WANG WEI-XING. STIMULATED RAMAN SCATTERING IN LASER PLASMA TARGETS. Acta Physica Sinica, 1991, 40(10): 1642-1651. doi: 10.7498/aps.40.1642
    [20] SHEN WEN-DA, ZHU SHI-TONG. RESONANT ABSORPTION AND SECOND-HARMONIC GENERATION AT A RIPPLED CRITICAL SURFACE IN THE LASER PLASMA. Acta Physica Sinica, 1981, 30(7): 945-952. doi: 10.7498/aps.30.945
Metrics
  • Abstract views:  6132
  • PDF Downloads:  216
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2016
  • Accepted Date:  11 December 2016
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map