Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structures, magnetic properties and spin-orbital coupling effects of aluminum nitride monolayers doped by 5d transition metal atoms: possible two-dimensional long-range magnetic orders

Yang Ming-Yu Yang Qian Zhang Bo Zhang Xu Cai Song Xue Yu-Long Zhou Tie-Ge

Citation:

Electronic structures, magnetic properties and spin-orbital coupling effects of aluminum nitride monolayers doped by 5d transition metal atoms: possible two-dimensional long-range magnetic orders

Yang Ming-Yu, Yang Qian, Zhang Bo, Zhang Xu, Cai Song, Xue Yu-Long, Zhou Tie-Ge
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The magnetism of two-dimensional material is an important research topic. In particular, the long-range magnetic order of two-dimensional material is of great significance in theoretical research and practical application. According to the Mermin-Wagner theory, the isotropic Heisenberg model in a two-dimensional system cannot produce long-range magnetic orders at non-vanishing temperatures. Considering the existence of strong magnetic anisotropy, possible two-dimensional long-range magnetic orders may exist in 5d atom doped two-dimensional aluminum nitride (AlN) monolayer. This research is performed by first-principles calculations based on the density functional theory. Geometries, electronic structures, magnetic properties, and magnetic anisotropy energies from spin-orbital coupling effects in AlN monolayers doped by 5d transition metal atoms (Hf, Ta, W, Re, Os, Ir, Pt, Au, and Hg) are calculated. Four kinds of supercells are used in the calculation, i.e, 22, 33, 44, and 55, with one aluminum atom substituted by one 5d atom. Projection augmented wave method is used to describe the interaction between the valence electrons and the ions. The plane wave is used to expand the wave function of the valence electron. For an optimized geometry, the bond length between the 5d metal atom and the nearest N atom is the largest in Hg-doped supercells, which is 2.093 , followed by the Au, Hf, Pt, Ta, and Ir according to the order of bond length magnitude. For the densities of states (DOSs), obvious impurity energy levels appear in the forbidden bands. For all the supercells, spin-up and spin-down DOSs of Ta and Ir doped systems are symmetric, indicating non-magnetic states. DOSs of Hf, W, Re, and Os doped systems are asymmetric, indicating magnetic states. For Pt, Au, and Hg, DOSs are symmetric in 22 supercells, but asymmetric in the 33, 44, and 55 supercells. Total magnetic moments and the spin densities are also given. In 55 supercells, they are 1.00, 0.00, 0.39, 1.99, 1.17, 0.00, 1.00, 2.00, and 1.00 for Hf, Ta, W, Re, Os, Ir, Pt, Au, and Hg, respectively. The magnetic moment is mainly concentrated in the vicinity of the 5d atoms. The energy differences between ferromagnetic and antiferromagnetic states are calculated. For Hf, Re, Pt and Au systems, the differences in 48 supercells reach the maximum values of -187.2563 meV, 286.2320 meV, -48.0637 meV and -61.7889 meV, respectively. The results indicate that there is a strong interaction between the magnetic centers. Magnetic anisotropy energy originating from spin-orbital effect is calculated in the 44 supercells. For the Re system, it is the highest, reaching 11.622 meV. For W, Os, and Au, the values are larger than 1 meV, showing strong magnetic anisotropies. The magnetic anisotropy can produce a spin wave energy gap, resulting in long-range magnetic orders. Based on the results above, it is predicted that with appropriate 5d atoms and suitable doping concentration, two-dimensional long-range magnetic orders may exist in 5d transition metal atom doped AlN monolayers.
      Corresponding author: Zhang Bo, zhangbo2010@nankai.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Tianjin, China (Grant No. 13JCQNJC00500).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [4]

    Fleischer J W, Segev M, Efremidis N K, Demetrios N 2003 Nature 422 147

    [5]

    Lu W, Lieber C M 2007 Nat. Mater. 6 841

    [6]

    Zhirnov V V, Cavin R K 2008 Nat. Nanotechnol. 3 77

    [7]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343

    [8]

    Awschalom D D, Flatt M E 2007 Nat. Phys. 3 153

    [9]

    Prinz G A 1998 Science 282 1660

    [10]

    Huang B, Xiang H J, Yu J, Wei S H 2012 Phys. Rev. Lett. 108 206802

    [11]

    Cocchi C, Prezzi D, Calzolari A, Molinari E 2010 J. Chem. Phys. 133 124703

    [12]

    Chan K T, Lee H, Cohen M L 2011 Phys. Rev. B 83 035405

    [13]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [14]

    Luo H M, Wang D H, He J B, Lu Y F 2005 J. Phys. Chem. B 109 1919

    [15]

    Xu C, Gao J, Gao C Y 2006 Acta Phys. Sin. 55 4221 (in Chinese) [徐灿, 曹娟, 高晨阳 2006 55 4221]

    [16]

    Kaplan B, Kaplan R 2014 J. Magn. Magn. Mater. 356 95

    [17]

    Ou X, Wu H 2014 Sci. Rep. 4 4609

    [18]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802

    [19]

    Laguna-Marco M A, Haskel D, Souza-Neto N, Lang J C, Krishnamurthy V V, Chikara S, Cao G, van Veenendaal M 2010 Phys. Rev. Lett. 105 216407

    [20]

    Zhang Z F, Zhou T G, Zhao H Y, Wei X L 2014 Chin. Phys. B 23 016801

    [21]

    Shitade A, Katsura H, Kune J, Qi X L, Zhang S C, Nagaosa N 2009 Phys. Rev. Lett. 102 256403

    [22]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [23]

    He W Y, He L 2013 Phys. Rev. B 88 085411

    [24]

    Zhang H B, Lazo C, Blgel S, Heinze S, Mokrousov Y 2012 Phys. Rev. Lett. 108 056802

    [25]

    Hu J, Alicea J, Wu R Q, Franz M 2012 Phys. Rev. Lett. 109 266801

    [26]

    Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]

    [27]

    Sebastian K C, Chawda M, Jonny L, Bodas D 2010 Mater. Lett. 64 2269

    [28]

    Chen S, Wu Q Y, Chen Z G, Xu G G, Huang Z G 2009 Acta Phys. Sin. 58 2011 (in Chinese) [陈珊, 吴青云, 陈志高, 许桂贵, 黄志高 2009 58 2011]

    [29]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [30]

    Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Ct M, Deutsch T, Genovese L, Ghosez P, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G, Zwanziger J W 2009 Comput. Mater. Commun. 180 2582

    [31]

    Torrent M, Jollet F, Bottin F, Zrah G, Gonze X 2008 Comput. Mater. Sci. 42 337

    [32]

    Perdew J P, Yue W 1986 Phys. Rev. B 33 8800

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [4]

    Fleischer J W, Segev M, Efremidis N K, Demetrios N 2003 Nature 422 147

    [5]

    Lu W, Lieber C M 2007 Nat. Mater. 6 841

    [6]

    Zhirnov V V, Cavin R K 2008 Nat. Nanotechnol. 3 77

    [7]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343

    [8]

    Awschalom D D, Flatt M E 2007 Nat. Phys. 3 153

    [9]

    Prinz G A 1998 Science 282 1660

    [10]

    Huang B, Xiang H J, Yu J, Wei S H 2012 Phys. Rev. Lett. 108 206802

    [11]

    Cocchi C, Prezzi D, Calzolari A, Molinari E 2010 J. Chem. Phys. 133 124703

    [12]

    Chan K T, Lee H, Cohen M L 2011 Phys. Rev. B 83 035405

    [13]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [14]

    Luo H M, Wang D H, He J B, Lu Y F 2005 J. Phys. Chem. B 109 1919

    [15]

    Xu C, Gao J, Gao C Y 2006 Acta Phys. Sin. 55 4221 (in Chinese) [徐灿, 曹娟, 高晨阳 2006 55 4221]

    [16]

    Kaplan B, Kaplan R 2014 J. Magn. Magn. Mater. 356 95

    [17]

    Ou X, Wu H 2014 Sci. Rep. 4 4609

    [18]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802

    [19]

    Laguna-Marco M A, Haskel D, Souza-Neto N, Lang J C, Krishnamurthy V V, Chikara S, Cao G, van Veenendaal M 2010 Phys. Rev. Lett. 105 216407

    [20]

    Zhang Z F, Zhou T G, Zhao H Y, Wei X L 2014 Chin. Phys. B 23 016801

    [21]

    Shitade A, Katsura H, Kune J, Qi X L, Zhang S C, Nagaosa N 2009 Phys. Rev. Lett. 102 256403

    [22]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [23]

    He W Y, He L 2013 Phys. Rev. B 88 085411

    [24]

    Zhang H B, Lazo C, Blgel S, Heinze S, Mokrousov Y 2012 Phys. Rev. Lett. 108 056802

    [25]

    Hu J, Alicea J, Wu R Q, Franz M 2012 Phys. Rev. Lett. 109 266801

    [26]

    Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]

    [27]

    Sebastian K C, Chawda M, Jonny L, Bodas D 2010 Mater. Lett. 64 2269

    [28]

    Chen S, Wu Q Y, Chen Z G, Xu G G, Huang Z G 2009 Acta Phys. Sin. 58 2011 (in Chinese) [陈珊, 吴青云, 陈志高, 许桂贵, 黄志高 2009 58 2011]

    [29]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [30]

    Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Ct M, Deutsch T, Genovese L, Ghosez P, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G, Zwanziger J W 2009 Comput. Mater. Commun. 180 2582

    [31]

    Torrent M, Jollet F, Bottin F, Zrah G, Gonze X 2008 Comput. Mater. Sci. 42 337

    [32]

    Perdew J P, Yue W 1986 Phys. Rev. B 33 8800

  • [1] Zhang Lei, Chen Qi-Hang, Cao Shuo, Qian Ping. First-principles calculations of carrier mobility in monolayer IrSCl and IrSI. Acta Physica Sinica, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [2] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [4] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [6] Du Jian-Bin, Zhang Qian, Li Qi-Feng, Tang Yan-Lin. Investigation of external electric field effect on C24H38O4 molecule by density functional theory. Acta Physica Sinica, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [7] Zhang Wei,  Chen Kai-Bin,  Chen Zhen-Dong. First-principles study on Jahn-Teller effect in Cr monolayer film. Acta Physica Sinica, 2018, 67(23): 237301. doi: 10.7498/aps.67.20181669
    [8] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [9] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [10] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [11] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [12] Zhang Bao-Long, Wang Dong-Hong, Yang Zhi, Liu Rui-Ping, Li Xiu-Yan. Noncollinear magnetic order and spin-orbit coupling effect in (FeCr)n alloying clusters. Acta Physica Sinica, 2013, 62(14): 143601. doi: 10.7498/aps.62.143601
    [13] Liu Yue-Ying, Zhou Tie-Ge, Lu Yuan, Zuo Xu. First principles caculations of h-BN monolayer with group IA/IIA elements replacing B as impurities. Acta Physica Sinica, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [14] Yu Dong-Qi, Zhang Zhao-Hui. First principles calculations of interaction between an armchair-edge graphene nanoribbon and its graphite substrate. Acta Physica Sinica, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [15] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [16] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [17] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [18] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
    [19] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
Metrics
  • Abstract views:  6469
  • PDF Downloads:  271
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2016
  • Accepted Date:  28 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map