-
利用密度泛函理论对合金团簇(FeCr)n (n≤6)的几何结构、稳定性和磁性进行了系统的研究. 研究结果表明, 对n≤3的合金团簇, 其基态具有共线的反铁磁序; 而对于n≥4 的合金团簇, 其基态具有非共线磁序, 因此在n=4时体系发生了共线磁序向非共线磁序的“相变”. 此外, 虽然3d过渡金属原子中电子的自旋轨道耦合效应比较弱, 但计算结果表明对于某些小尺寸的合金团簇其轨道磁矩不能忽略. 对非共线磁性团簇的成键性质以及产生磁序“相变”的物理起源进行了详细讨论.
-
关键词:
- (FeCr)n合金团簇 /
- 密度泛函理论 /
- 非共线磁序 /
- 自旋轨道耦合效应
Using density functional theory, the structures, stabilities and magnetic properties of (FeCr)n (n≤ 6) alloying clusters are systematically investigated. For smaller clusters with n≤3, the results show that the ground-state system possesses collinear antiferromagnetic order. For n≥4 cases, however, the ground-state cluster has noncollinear magnetic order. Therefore, there is a collinear-to-noncollinear magnetic transition at n=4 in (FeCr)n systems. In addition, although the spin-orbit coupling effect of 3d transition metal atom is often weak, the results indicate that the orbital magnetic moments of some certain clusters are significant and important. Finally, the chemical bond of noncollinear magnetic clusters and the physical origin of the magnetic transition are analyzed.-
Keywords:
- (FeCr)n alloying clusters /
- density functional theory /
- noncollinear magnetic order /
- spin-orbit coupling effect
[1] Liu F, Khanna S N, Jena P 1991 Phys. Rev. B 40 8179
[2] Rodríguez-López J L, Aguilera-Granja F, Michaelian K, Vega A 2003 Phys. Rev. B 67 174413
[3] Zhang X R, Gao C H, Wu L Q, Tang S H 2010 Acta Phys. Sin. 59 5429 (in Chinese) [张秀荣, 高从花, 吴礼清, 唐师会 2010 59 5429]
[4] Wang J L 2007 Phys. Rev. B 75 155422
[5] Haraldsen J T, Barnes T, Sinclair J W, Thompson J R, Sacci R L, Turner J F C 2009 Phys. Rev. B 80 064406
[6] L J, Xu X H, Wu H S 2004 Acta Phys. Sin. 53 1050 (in Chinese) [吕谨, 许小红, 武海顺 2004 53 1050]
[7] Baumann C A, van Zee R J, Bhat S V, Weltner W 1983 J. Chem. Phys. 78 190
[8] Geoffrey M K, Mark B K 1997 J. Chem. Phys. 106 9810
[9] Knickelbein M B 2001 Phys. Rev. Lett. 86 5255
[10] Tina M B, Marcel H F S, Vijay K, Yoshiyuki K 2002 Phys. Rev. B 66 064412
[11] Bobadova-Parvanova P, Jackson K A, Srinivas S, Horoi M 2005 J. Chem. Phys. 122 014310
[12] Longo R C, Noya E G, Gallego L J 2005 Phys. Rev. B 72 174409
[13] Longo R C, Alemany M M G, Ferrer J, Vega A, Gallego L J 2008 J. Chem. Phys. 128 114315
[14] Kabir M, Kanhere D G, Mookerjee A 2007 Phys. Rev. B 75 214433
[15] Kohl C, Bertsch G F 1999 Phys. Rev. B 60 4205
[16] Tatsuki O, Alfredo P, Roberto C 1998 Phys. Rev. Lett. 80 3622
[17] Longo R C, Alemany M M G, Vega A, Ferrer J, Gallego L J 2008 Nanotechnology 19 245701
[18] Du J L, Shen N F, Zhu L Y, Wang J L 2010 J. Phys. D: Appl. Phys. 43 015006
[19] Bent H A 1966 J. Chem. Educ. 43 170
[20] Gupta R, Singh Raman R K, Koch C C 2008 Mater. Sci. Eng. A 494 253
[21] Singh Raman R K, Gupta R K, Koch C C 2010 Philos. Mag. 90 3233
[22] Drovosekov A B, Kreines N M, Kholin D I 2010 J. Low. Temp. Phys. 36 808
[23] Drovosekov A B, Kreines N M, Kholin D I, Korolev A V, Milyaev M A, Romashev L N, Ustinov V V 2008 JETP Lett. 88 118
[24] Kresse G, Furthmller J 1999 Phys. Rev. B 54 11169
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[27] Lin Q B, Li R Q, Wen Y H, Zhu Z Z 2008 Acta Phys. Sin. 57 181 (in Chinese) [林秋宝, 李仁全, 文玉华, 朱梓忠 2008 57 181]
[28] Ma Q M, Xie Z, Wang B R, Liu Y, Li Y C 2011 Solid State Commun. 151 806
[29] Wang J L, Zhang X Y, Schleyer P V R, Chen Z F 2008 J. Chem. Phys. 128 9810
[30] Ataca C, Cahangirov S, Durgun E, Jang Y R, Ciraci S 2008 Phys. Rev. B 77 214413
[31] Henkelman G, Arnalsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354
[32] Zin V, Dabalá M 2010 Acta Mater. 58 311
-
[1] Liu F, Khanna S N, Jena P 1991 Phys. Rev. B 40 8179
[2] Rodríguez-López J L, Aguilera-Granja F, Michaelian K, Vega A 2003 Phys. Rev. B 67 174413
[3] Zhang X R, Gao C H, Wu L Q, Tang S H 2010 Acta Phys. Sin. 59 5429 (in Chinese) [张秀荣, 高从花, 吴礼清, 唐师会 2010 59 5429]
[4] Wang J L 2007 Phys. Rev. B 75 155422
[5] Haraldsen J T, Barnes T, Sinclair J W, Thompson J R, Sacci R L, Turner J F C 2009 Phys. Rev. B 80 064406
[6] L J, Xu X H, Wu H S 2004 Acta Phys. Sin. 53 1050 (in Chinese) [吕谨, 许小红, 武海顺 2004 53 1050]
[7] Baumann C A, van Zee R J, Bhat S V, Weltner W 1983 J. Chem. Phys. 78 190
[8] Geoffrey M K, Mark B K 1997 J. Chem. Phys. 106 9810
[9] Knickelbein M B 2001 Phys. Rev. Lett. 86 5255
[10] Tina M B, Marcel H F S, Vijay K, Yoshiyuki K 2002 Phys. Rev. B 66 064412
[11] Bobadova-Parvanova P, Jackson K A, Srinivas S, Horoi M 2005 J. Chem. Phys. 122 014310
[12] Longo R C, Noya E G, Gallego L J 2005 Phys. Rev. B 72 174409
[13] Longo R C, Alemany M M G, Ferrer J, Vega A, Gallego L J 2008 J. Chem. Phys. 128 114315
[14] Kabir M, Kanhere D G, Mookerjee A 2007 Phys. Rev. B 75 214433
[15] Kohl C, Bertsch G F 1999 Phys. Rev. B 60 4205
[16] Tatsuki O, Alfredo P, Roberto C 1998 Phys. Rev. Lett. 80 3622
[17] Longo R C, Alemany M M G, Vega A, Ferrer J, Gallego L J 2008 Nanotechnology 19 245701
[18] Du J L, Shen N F, Zhu L Y, Wang J L 2010 J. Phys. D: Appl. Phys. 43 015006
[19] Bent H A 1966 J. Chem. Educ. 43 170
[20] Gupta R, Singh Raman R K, Koch C C 2008 Mater. Sci. Eng. A 494 253
[21] Singh Raman R K, Gupta R K, Koch C C 2010 Philos. Mag. 90 3233
[22] Drovosekov A B, Kreines N M, Kholin D I 2010 J. Low. Temp. Phys. 36 808
[23] Drovosekov A B, Kreines N M, Kholin D I, Korolev A V, Milyaev M A, Romashev L N, Ustinov V V 2008 JETP Lett. 88 118
[24] Kresse G, Furthmller J 1999 Phys. Rev. B 54 11169
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[27] Lin Q B, Li R Q, Wen Y H, Zhu Z Z 2008 Acta Phys. Sin. 57 181 (in Chinese) [林秋宝, 李仁全, 文玉华, 朱梓忠 2008 57 181]
[28] Ma Q M, Xie Z, Wang B R, Liu Y, Li Y C 2011 Solid State Commun. 151 806
[29] Wang J L, Zhang X Y, Schleyer P V R, Chen Z F 2008 J. Chem. Phys. 128 9810
[30] Ataca C, Cahangirov S, Durgun E, Jang Y R, Ciraci S 2008 Phys. Rev. B 77 214413
[31] Henkelman G, Arnalsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354
[32] Zin V, Dabalá M 2010 Acta Mater. 58 311
计量
- 文章访问数: 9244
- PDF下载量: 739
- 被引次数: 0