Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Predictability of forced Lorenz system

Li Bao-Sheng Ding Rui-Qiang Li Jian-Ping Zhong Quan-Jia

Citation:

Predictability of forced Lorenz system

Li Bao-Sheng, Ding Rui-Qiang, Li Jian-Ping, Zhong Quan-Jia
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, the actual atmospheric predictability has attracted widespread attention. Improving our understanding of weather predictability is vital to developing numerical models and improving our forecast skill in weather and climate events. Given that the atmosphere is a complex and nonlinear system, taking the Lorenz system as an example is a better way to understand the actual atmosphere predictability. Up to now, some predictability problems of the Lorenz system have been investigated, such as the relative effects of the initial error and the model error. Previous advances in the research of predictability mainly focus on the relationship between the predictability limit and the initial error. As is well known, the external forcing can also result in the change of the predictability. Therefore, it is significant to investigate the predictability changing with the external forcing. The nonlinear local Lyapunov exponent (NLLE) is introduced to measure the average growth rate of the initial error of nonlinear dynamical model, which has been used for quantitatively determining the predictability limit of chaos system. Based on the NLLE approach, the influences of external forcing on the predictability are studied in the Lorenz system with constant forcing and Lorenz system with quasi-periodic forcing in this paper. The results indicate that for the Lorenz systems with constant and quasi-periodic forcings respectively, their predictability limits increase with forcing strength increasing. In the case of the same magnitude but different directions, the constant and quasi-periodic forcing both show different effects on the predictability limit in the Lorenz system, and these effects become significant with the increase of forcing strength. Generally speaking, the positive forcing leads to a higher predictability limit than the negative forcing. Therefore, when we consider the effects of positive and negative elements and phases in the atmosphere and ocean research, the predictability problems driven by different phases should be considered separately. In addition, the influences of constant and quasi-periodic forcings on the predictability are different in the Lorenz system. The effect of the constant forcing on the predictability is mainly reflected in the linear phase of error growth, while the nonlinear phase should also be considered additionally for the case of the quasi-periodic forcing. The predictability of the system under constant forcing is higher than that of the system under quasi-periodic forcing. These results based on simple chaotic model could provide an insight into the predictability studies of complex systems.
      Corresponding author: Ding Rui-Qiang, drq@mail.iap.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 41522502), the National Programme on Global Change and Air-Sea Interaction, China (Grant No. GASI-IPOVAI-06), and the National Key Research and Development Plan of China (Grant No. 2016YFA0601801).
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chou J F 2002 Nonlinearity and Complexit in Atmospheric Sciences (Beijing: China Meteorological Press) p131 (in Chinese) [丑纪范 2002 大气科学中的非线性和复杂性 (北京: 气象出版社) 第131页]

    [3]

    Lorenz E N 1965 Tellus A 17 321

    [4]

    Lorenz E N, Palmer T N, Hagedorn R 1995 Proceedings of a Seminar Held at ECMWF on Predictability (I), 1995 p1

    [5]

    Li J P, Chou J F 2003 Chin. J. Atmos. Sci. 27 653 (in Chinese) [李建平, 丑纪范 2003 大气科学 27 653]

    [6]

    Duan W S, Mu M 2006 Chin. J. Atmos. Sci. 30 759 (in Chinese) [段晚锁, 穆穆 2006 大气科学 30 759]

    [7]

    Duan W S, Ding R Q, Zhou F F 2013 Climatic Environ. Res. 18 524 (in Chinese) [段晚锁, 丁瑞强, 周菲凡 2013 气候与环境研究 18 524]

    [8]

    Ding R Q, Li J P 2007 Phys. Lett. A 364 396

    [9]

    Ding R Q, Li J P 2007 Chin. J. Atmos. Sci. 31 571 (in Chinese) [丁瑞强, 李建平 2007 大气科学 31 571]

    [10]

    Ding R Q, Li J P 2008 Acta Phys. Sin. 57 7494 (in Chinese) [丁瑞强, 李建平 2008 57 7494]

    [11]

    Li J P, Ding R Q 2008 Chin. J. Atmos. Sci. 32 975 (in Chinese) [李建平, 丁瑞强 2008 大气科学 32 975]

    [12]

    Ding R Q, Li J P 2009 Acta Meteor. Sin. 67 343 (in Chinese) [丁瑞强, 李建平 2009 气象学报 67 343]

    [13]

    Ding R Q, Li J P, Seo K H 2010 Mon. Wea. Rev. 138 1004

    [14]

    Ding R Q, Li J P, Seo K H 2011 Mon. Wea. Rev. 139 2421

    [15]

    Ding R Q, Li J P 2011 Mon. Wea. Rev. 139 3265

    [16]

    Ding R Q, Li J P 2013 Int. J. Climatol. 33 1936

    [17]

    Ding R Q, Li J P, Zheng F, Feng J, Liu D Q 2015 Climate Dyn. 46 1563

    [18]

    Ding R Q, Li J P 2012 Adv. Atmos. Sci. 29 1078

    [19]

    Reichler T J, Roads J O 2003 Nonlinear Proc. Geoph. 10 211

    [20]

    Yang X Q, Xie Q, Huang T S 1992 Acta Meteor. Sin. 50 349 (in Chinese) [杨修群, 谢倩, 黄士松 1992 气象学报 50 349]

    [21]

    Li C Y, Zhu J H, Sun Z B 2002 Climatic Environ. Res. 7 209 (in Chinese) [李崇银, 朱锦红, 孙照渤 2002 气候与环境研究 7 209]

    [22]

    Li W J, Li Y, Chen L J, Zhao Z G 2013 J. Appl. Meteor. Sci. 24 385 (in Chinese) [李维京, 李怡, 陈丽娟, 赵振国 2013 应用气象学报 24 385]

    [23]

    Charles C D, Hunter D E, Fairbanks R G 1997 Science 277 925

    [24]

    Wang B, Wu R G, Fu X H 2000 J. Climate 13 1517

    [25]

    Zhang Z S, Hu P, Feng G L 2016 Acta Meteor. Sin. 74 165 (in Chinese) [张志森, 胡泊, 封国林 2016 气象学报 74 165]

    [26]

    Gong Z Q, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 3180 (in Chinese) [龚志强, 封国林, 董文杰, 李建平 2006 55 3180]

    [27]

    Gong Z Q, Zhou L, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 5351 (in Chinese) [龚志强, 周磊, 支蓉, 封国林 2008 57 5351]

    [28]

    Palmer T N 1994 Proceedings-Indian National Science Academy Part A 60 57

    [29]

    He W P, Feng G L, Gao X Q 2006 Acta Phys. Sin. 55 3175 (in Chinese) [何文平, 封国林, 高新全 2006 55 3175]

    [30]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [31]

    Eckmann J P, Ruelle D 1985 Rev. Mod. Phys. 57 617

    [32]

    Lacarra J F, Talagrand O 1988 Tellus 40A 81

    [33]

    Mittal A K, Dwivedi S, Pandey A C 2005 Nonlin. Pro. Geophy. 12 707

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chou J F 2002 Nonlinearity and Complexit in Atmospheric Sciences (Beijing: China Meteorological Press) p131 (in Chinese) [丑纪范 2002 大气科学中的非线性和复杂性 (北京: 气象出版社) 第131页]

    [3]

    Lorenz E N 1965 Tellus A 17 321

    [4]

    Lorenz E N, Palmer T N, Hagedorn R 1995 Proceedings of a Seminar Held at ECMWF on Predictability (I), 1995 p1

    [5]

    Li J P, Chou J F 2003 Chin. J. Atmos. Sci. 27 653 (in Chinese) [李建平, 丑纪范 2003 大气科学 27 653]

    [6]

    Duan W S, Mu M 2006 Chin. J. Atmos. Sci. 30 759 (in Chinese) [段晚锁, 穆穆 2006 大气科学 30 759]

    [7]

    Duan W S, Ding R Q, Zhou F F 2013 Climatic Environ. Res. 18 524 (in Chinese) [段晚锁, 丁瑞强, 周菲凡 2013 气候与环境研究 18 524]

    [8]

    Ding R Q, Li J P 2007 Phys. Lett. A 364 396

    [9]

    Ding R Q, Li J P 2007 Chin. J. Atmos. Sci. 31 571 (in Chinese) [丁瑞强, 李建平 2007 大气科学 31 571]

    [10]

    Ding R Q, Li J P 2008 Acta Phys. Sin. 57 7494 (in Chinese) [丁瑞强, 李建平 2008 57 7494]

    [11]

    Li J P, Ding R Q 2008 Chin. J. Atmos. Sci. 32 975 (in Chinese) [李建平, 丁瑞强 2008 大气科学 32 975]

    [12]

    Ding R Q, Li J P 2009 Acta Meteor. Sin. 67 343 (in Chinese) [丁瑞强, 李建平 2009 气象学报 67 343]

    [13]

    Ding R Q, Li J P, Seo K H 2010 Mon. Wea. Rev. 138 1004

    [14]

    Ding R Q, Li J P, Seo K H 2011 Mon. Wea. Rev. 139 2421

    [15]

    Ding R Q, Li J P 2011 Mon. Wea. Rev. 139 3265

    [16]

    Ding R Q, Li J P 2013 Int. J. Climatol. 33 1936

    [17]

    Ding R Q, Li J P, Zheng F, Feng J, Liu D Q 2015 Climate Dyn. 46 1563

    [18]

    Ding R Q, Li J P 2012 Adv. Atmos. Sci. 29 1078

    [19]

    Reichler T J, Roads J O 2003 Nonlinear Proc. Geoph. 10 211

    [20]

    Yang X Q, Xie Q, Huang T S 1992 Acta Meteor. Sin. 50 349 (in Chinese) [杨修群, 谢倩, 黄士松 1992 气象学报 50 349]

    [21]

    Li C Y, Zhu J H, Sun Z B 2002 Climatic Environ. Res. 7 209 (in Chinese) [李崇银, 朱锦红, 孙照渤 2002 气候与环境研究 7 209]

    [22]

    Li W J, Li Y, Chen L J, Zhao Z G 2013 J. Appl. Meteor. Sci. 24 385 (in Chinese) [李维京, 李怡, 陈丽娟, 赵振国 2013 应用气象学报 24 385]

    [23]

    Charles C D, Hunter D E, Fairbanks R G 1997 Science 277 925

    [24]

    Wang B, Wu R G, Fu X H 2000 J. Climate 13 1517

    [25]

    Zhang Z S, Hu P, Feng G L 2016 Acta Meteor. Sin. 74 165 (in Chinese) [张志森, 胡泊, 封国林 2016 气象学报 74 165]

    [26]

    Gong Z Q, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 3180 (in Chinese) [龚志强, 封国林, 董文杰, 李建平 2006 55 3180]

    [27]

    Gong Z Q, Zhou L, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 5351 (in Chinese) [龚志强, 周磊, 支蓉, 封国林 2008 57 5351]

    [28]

    Palmer T N 1994 Proceedings-Indian National Science Academy Part A 60 57

    [29]

    He W P, Feng G L, Gao X Q 2006 Acta Phys. Sin. 55 3175 (in Chinese) [何文平, 封国林, 高新全 2006 55 3175]

    [30]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [31]

    Eckmann J P, Ruelle D 1985 Rev. Mod. Phys. 57 617

    [32]

    Lacarra J F, Talagrand O 1988 Tellus 40A 81

    [33]

    Mittal A K, Dwivedi S, Pandey A C 2005 Nonlin. Pro. Geophy. 12 707

  • [1] Guan Guo-Rong, Wu Cheng-Mao, Jia Qian. An improved high performance Lorenz system and its application. Acta Physica Sinica, 2015, 64(2): 020501. doi: 10.7498/aps.64.020501
    [2] Da Chao-Jiu, Mu Shuai, Ma De-Shan, Yu Hai-Peng, Hou Wei, Gong Zhi-Qiang. The theoretical study of the turning period in numerical weather prediction models based on the Lorenz equations. Acta Physica Sinica, 2014, 63(2): 029201. doi: 10.7498/aps.63.029201
    [3] Zhang Zhi-Sen, Gong Zhi-Qiang, Zhi Rong. Analysis of the direction of information transfer of Lorenz system and Walker circulation with transfer entropy. Acta Physica Sinica, 2013, 62(12): 129203. doi: 10.7498/aps.62.129203
    [4] Jia Hong-Yan, Chen Zeng-Qiang, Xue Wei. Analysis and circuit implementation for the fractional-order Lorenz system. Acta Physica Sinica, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [5] Li Ai-Bing, Zhang Li-Feng. Rules for predicting regime change in the Lorenz chaotic system based on the Lorenz map. Acta Physica Sinica, 2013, 62(12): 120507. doi: 10.7498/aps.62.120507
    [6] Li Hui-Min, Fan Yang-Yu, Sun Heng-Yi, Zhang Jing, Jia Meng. Growing two-dimensional manifold of nonlinear maps based on generalized Foliation condition. Acta Physica Sinica, 2012, 61(2): 029501. doi: 10.7498/aps.61.029501
    [7] Zheng Zhi-Hai, Feng Guo-Lin, Huang Jian-Ping, Chou Ji-Fan. Predictability-based extended-range ensemble prediction method and numerical experiments. Acta Physica Sinica, 2012, 61(19): 199203. doi: 10.7498/aps.61.199203
    [8] Li Ai-Bing, Zhang Li-Feng, Xiang Jie. Influence of external forcing on the predictability of Lorenz model. Acta Physica Sinica, 2012, 61(11): 119202. doi: 10.7498/aps.61.119202
    [9] Li Xiao-Juan, Xu Zhen-Yuan, Xie Qing-Chun, Wang Bing. Generalized synchronization of two different unidirectional coupled Lorenz systems. Acta Physica Sinica, 2010, 59(3): 1532-1539. doi: 10.7498/aps.59.1532
    [10] Sun Ke-Hui, Yang Jing-Li, Ding Jia-Feng, Sheng Li-Yuan. Circuit design and implementation of Lorenz chaotic system with one parameter. Acta Physica Sinica, 2010, 59(12): 8385-8392. doi: 10.7498/aps.59.8385
    [11] Feng Guo-Lin, Gong Zhi-Qiang, Hou Wei, Wang Qi-Guang, Zhi Rong. Long-range correlation of extreme events in meterorological field. Acta Physica Sinica, 2009, 58(4): 2853-2861. doi: 10.7498/aps.58.2853
    [12] Li Wen-Lin, Song Yun-Zhong. Chaos anti-control of nonlinear system with uncertainties. Acta Physica Sinica, 2008, 57(1): 51-55. doi: 10.7498/aps.57.51
    [13] Wang Qi-Guang, Zhi Rong, Zhang Zeng-Ping. The research on long range correlation of Lorenz system. Acta Physica Sinica, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
    [14] Ding Rui-Qiang, Li Jian-Ping. Study on the regularity of predictability limit of chaotic systems with different initial errors. Acta Physica Sinica, 2008, 57(12): 7494-7499. doi: 10.7498/aps.57.7494
    [15] Wang Xing-Yuan, Wang Ming-Jun. Hyperchaotic Lorenz system. Acta Physica Sinica, 2007, 56(9): 5136-5141. doi: 10.7498/aps.56.5136
    [16] Wang Jie-Zhi, Chen Zeng-Qiang, Yuan Zhu-Zhi. A new chaotic system and analysis of its properties. Acta Physica Sinica, 2006, 55(8): 3956-3963. doi: 10.7498/aps.55.3956
    [17] He Wen-Ping, Feng Guo-Lin, Gao Xin-Quan, Chou Ji-Fan. Dynamics of the Lorenz system under quasiperiodic driving. Acta Physica Sinica, 2006, 55(6): 3175-3179. doi: 10.7498/aps.55.3175
    [18] He Wen-Ping, Feng Guo-Lin, Dong Wen-Jie, Li Jian-Ping. On the predictability of the Lorenz system. Acta Physica Sinica, 2006, 55(2): 969-977. doi: 10.7498/aps.55.969
    [19] Tang Guo-Ning, Luo Xiao-Shu. The prediction feedback control for chaotic systems. Acta Physica Sinica, 2004, 53(1): 15-20. doi: 10.7498/aps.53.15
    [20] Guo Hui-Jun, Liu Jun_Hua. Chaos control of Lorenz system via RBF neuralnetwork sliding mode controller. Acta Physica Sinica, 2004, 53(12): 4080-4086. doi: 10.7498/aps.53.4080
Metrics
  • Abstract views:  6474
  • PDF Downloads:  303
  • Cited By: 0
Publishing process
  • Received Date:  11 November 2016
  • Accepted Date:  15 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map