-
The existence of seed electrons is the precondition of air breakdown induced by high power microwave (HPM). Seed electrons are usually assumed to exist in background atmosphere when simulating the air breakdown triggered by HPM. However, this assumption may lead to some large errors especially in lower atmosphere where the number of electrons is very small. We establish a physical model of seed electron production from O- detachment collision with air molecules using the Monte Carlo method. A three-dimensional Monte Carlo program is developed to simulate this process. The average energies of O- and the average generation time of seed electrons under different electric intensities, frequencies, air pressures and breakdown volumes are obtained through simulation. The simulations show that the average generation time of seed electrons becomes longer with the increase of air pressure or the HPM frequency. The average seed electron generation time becomes shorter with the increase of electric intensity or breakdown volume. Finally, we simulate the processes of O- detachment collision with air molecules under the same experimental conditions. The comparative results show that the seed electron generation from O- detachment can explain the experimental results when the HPM frequency is low, while at higher frequencies, the average seed electron generation time becomes so long that it cannot correspond to the experimental value. Therefore some other mechanisms should be considered in the higher frequency case.
-
Keywords:
- high power microwave /
- air breakdown /
- seed electron /
- Monte Carlo
[1] Thumm M K 2011 J. Infrared Milli. Terahz Waves 32 241
[2] Zhang J, Jin Z X, Yang J H, Zhong H. H, Shu T, Zhang J D, Qian B L, Yuan C W, Li Z Q, Fan Y W, Zhou S Y, Xu L R 2011 IEEE Trans. Plasma Sci. 39 1438
[3] Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J 2008 IEEE Trans. Plasma Sci. 36 936
[4] Zhou D F, Yu D J, Yang J H, Hou D T, Xia W, Hu T, Lin J Y, Rao Y P, Wei J J, Zhang D W, Wang L P 2013 Acta Phys. Sin. 62 014207 (in Chinese) [周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍 2013 62 014207]
[5] Song W, Shao H, Zhang Z Q, Huang H J, Li J W, Wang K Y, Jing H, Liu Y J, Cui X H 2014 Acta Phys. Sin. 63 064101 (in Chinese) [宋玮, 邵浩, 张治强, 黄惠军, 李佳伟, 王康懿, 景洪, 刘英君, 崔新红 2014 63 064101]
[6] Liu G Z, Liu J Y, Huang W H, Zhou J G, Song X, Ning H 2000 Chin. Phys. 9 757
[7] MacDonald A D 1966 Microwave Breakdown in Gases (New York: John Wiley & Son.) pp1-35
[8] Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 93 151504
[9] Kuo S P, Zhang Y S 1991 Phys. Fluids B-Plasma 3 2906
[10] Nam S K, Verboncoeur J P 2009 Comput. Phys. Commun. 180 628
[11] Beeson S R, Dickens J C, Neuber A A 2014 IEEE Trans. Plasma Sci. 42 3450
[12] Zhao P C, Liao C, Yang D, Zhong X M 2014 Chin. Phys. B 23 055101
[13] Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Edmiston G F, Neuber A A, Oda Y 2009 Phys. Plasmas 16 055702
[14] Cook A M, Hummelt J S, Shapiro M A, Temkin R J 2011 Phys. Plasmas 18 100704
[15] Nam S K, Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004
[16] Boeuf J P, Chaudhury B, Zhu G Q 2010 Phys. Rev. Lett. 104 11079
[17] Cook A M, Shapiro M, Temkin R 2010 Appl. Phys. Lett. 97 011504
[18] Zhou Q H, Dong Z W 2011 Appl. Phys. Lett. 98 161504
[19] Dorozhkina D, Semenov V, Olsson T, Anderson D, Jordan U, Puech J, Lapierre L, Lisak M 2006 Phys. Plasmas 13 013506
[20] Cook A M, Hummelt J S, Shapiro M A, Temkin R J 2011 Phys. Plasmas 18 080707
[21] Edmiston G F, Krile J T, Neuber A, Dickens J, Krompholz H 2006 IEEE Trans. Plasma Sci. 34 1782
[22] Foster J, Krompholz H, Neuber A A 2011 Phys Plasmas 18 013502
[23] Stephens J, Beeson S, Dickens J, Neuber A A 2012 Phys. Plasmas 19 112111
[24] Krile J T, Neuber A A 2011 Appl. Phys. Lett. 98 211502
[25] Edmiston G F, Neuber A A, Krompholz H G, Krile J T 2008 J. Appl. Phys. 103 063303
[26] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179
-
[1] Thumm M K 2011 J. Infrared Milli. Terahz Waves 32 241
[2] Zhang J, Jin Z X, Yang J H, Zhong H. H, Shu T, Zhang J D, Qian B L, Yuan C W, Li Z Q, Fan Y W, Zhou S Y, Xu L R 2011 IEEE Trans. Plasma Sci. 39 1438
[3] Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J 2008 IEEE Trans. Plasma Sci. 36 936
[4] Zhou D F, Yu D J, Yang J H, Hou D T, Xia W, Hu T, Lin J Y, Rao Y P, Wei J J, Zhang D W, Wang L P 2013 Acta Phys. Sin. 62 014207 (in Chinese) [周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍 2013 62 014207]
[5] Song W, Shao H, Zhang Z Q, Huang H J, Li J W, Wang K Y, Jing H, Liu Y J, Cui X H 2014 Acta Phys. Sin. 63 064101 (in Chinese) [宋玮, 邵浩, 张治强, 黄惠军, 李佳伟, 王康懿, 景洪, 刘英君, 崔新红 2014 63 064101]
[6] Liu G Z, Liu J Y, Huang W H, Zhou J G, Song X, Ning H 2000 Chin. Phys. 9 757
[7] MacDonald A D 1966 Microwave Breakdown in Gases (New York: John Wiley & Son.) pp1-35
[8] Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 93 151504
[9] Kuo S P, Zhang Y S 1991 Phys. Fluids B-Plasma 3 2906
[10] Nam S K, Verboncoeur J P 2009 Comput. Phys. Commun. 180 628
[11] Beeson S R, Dickens J C, Neuber A A 2014 IEEE Trans. Plasma Sci. 42 3450
[12] Zhao P C, Liao C, Yang D, Zhong X M 2014 Chin. Phys. B 23 055101
[13] Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Edmiston G F, Neuber A A, Oda Y 2009 Phys. Plasmas 16 055702
[14] Cook A M, Hummelt J S, Shapiro M A, Temkin R J 2011 Phys. Plasmas 18 100704
[15] Nam S K, Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004
[16] Boeuf J P, Chaudhury B, Zhu G Q 2010 Phys. Rev. Lett. 104 11079
[17] Cook A M, Shapiro M, Temkin R 2010 Appl. Phys. Lett. 97 011504
[18] Zhou Q H, Dong Z W 2011 Appl. Phys. Lett. 98 161504
[19] Dorozhkina D, Semenov V, Olsson T, Anderson D, Jordan U, Puech J, Lapierre L, Lisak M 2006 Phys. Plasmas 13 013506
[20] Cook A M, Hummelt J S, Shapiro M A, Temkin R J 2011 Phys. Plasmas 18 080707
[21] Edmiston G F, Krile J T, Neuber A, Dickens J, Krompholz H 2006 IEEE Trans. Plasma Sci. 34 1782
[22] Foster J, Krompholz H, Neuber A A 2011 Phys Plasmas 18 013502
[23] Stephens J, Beeson S, Dickens J, Neuber A A 2012 Phys. Plasmas 19 112111
[24] Krile J T, Neuber A A 2011 Appl. Phys. Lett. 98 211502
[25] Edmiston G F, Neuber A A, Krompholz H G, Krile J T 2008 J. Appl. Phys. 103 063303
[26] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179
Catalog
Metrics
- Abstract views: 5985
- PDF Downloads: 219
- Cited By: 0