Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Formation mechanism of water jets induced by the interaction between bubble and free surface

Zheng Jian Zhang Duo Jiang Bang-Hai Lu Fang-Yun

Citation:

Formation mechanism of water jets induced by the interaction between bubble and free surface

Zheng Jian, Zhang Duo, Jiang Bang-Hai, Lu Fang-Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Explosion in shallow water or small depth water will generate upward water jet, mainly because bubbles generated by explosion will interact with the surface of water. Different underwater depths can result in upward water jets with different kinds of shapes, such as water column, water plume, jet, spall dome, splash, spike, etc. To reveal the formation mechanisms of different types of water jets, a spark bubble experiment platform is set up, and the motions of bubble and free surface are studied experimentally by high-speed photography. The dynamic images for the formation process of the water jets under different initial depths of bubble are obtained. Through theoretical analysis and direct observation of the experimental data, the interaction process between the oscillating bubble and free surface are clarified, and the evolution rule of water jets is obtained. It is found that the key factor affecting the formation of different shapes of the water jets is the superposition of the disturbance of the second bubble pulse and the simple-shape jet induced by the first bubble pulse. Five types of the superpositions are summarized:1) All-fit type, with a large depth of initial bubble, the first and the second bubble impulse fit well to form a smooth and slightly arched water dome; 2) partial-fit type, with a less large depth of initial bubble, higher arched water dome is formed due to the raising effects of second bubble pulse partially fit the initial water dome shape; 3) catch-up type, with a mediate depth of initial bubble, the free-surface jet caused by first bubble pulse will be caught up from the bottom by the second pulse, and form a thin and high velocity jet; 4) run-after type, with a smaller depth of initial bubble, the free-surface jet caused by first bubble pulse will be raised from the bottom by the second pulse, and form a jet with thin head and thick pedestal, sometimes form a crown-type splash; 5) non-superposition type, the depth of initial bubble is so small that the bubble will break up, and no superposition will happen. In summary, the ratio of the initial depth to the maximum radius of bubble is found to be a decisive factor of the superposition type. The initial bubble is described by a dimensionless distance. These conclusions well explain the phenomena observed in experiment, and can provide a new vision and reference to the understanding of the formation mechanism of water jets induced by the interaction between bubble and free surface.
      Corresponding author: Zhang Duo, zhangduo@nudt.edu.cn
    [1]

    Brennen C E 1995 Cavitation and Bubble Dynamics(New York:Oxford University Press) pp47-107

    [2]

    Plesset M S, Prosperetti A 2003 Annu. Rev. Fluid Mech. 9 145

    [3]

    Wang B, Zhang Y P, Wang Y P 2012 Chin. J. High Pressure Phys. 26 577 (in Chinese)[汪斌, 张远平, 王彦平 2012 高压 26 577]

    [4]

    Klaseboer E, Hung K C, Wang C, Wang C W, Khoo B C, Boyce P 2005 J. Fluid Mech. 537 387

    [5]

    Saurel R, Abgrall R 2000 Siam. J. Sci. Comput. 21 1115

    [6]

    Geers T L, Hunter K S 2002 J. Acoust. Soc. Am. 111 1584

    [7]

    Wang C, Khoo B C 2004 J. Comput. Phys. 194 451

    [8]

    Cole R H (translated by Luo Y J, Han R Z, Guan X) 1965 Underwater Explosion (Beijing:National Defence Industry Press) pp231-235 (in Chinese)[库尔R H 著(罗耀杰, 韩润泽, 官信 译) 1965 水下爆炸 (北京:国防工业出版社) 第231235页]

    [9]

    Kedrinskii V K (translated by Knyazeva S Y) 2005 Hydrodynamics of Explosion:Experiments and Models (Heidelberg:Springer) pp313-353

    [10]

    Pearson A, Blake J R, Otto S R 2004 J. Eng. Math. 48 391

    [11]

    Wang S S, Li M, Ma F 2014 Acta Phys. Sin. 63 194703 (in Chinese)[王树山, 李梅, 马峰 2014 63 194703]

    [12]

    Hung C F, Hwangfu J J 2010 J. Fluid Mech. 651 55

    [13]

    Li J, Rong J L 2011 Ocean Eng. 38 1861

    [14]

    Dadvand A, Khoo B C, Shervani-Tabar M T 2009 Exp. Fluids 46 419

    [15]

    Zhang A M, Wang C, Wang S P, Cheng X D 2012 Acta Phys. Sin. 61 084701 (in Chinese)[张阿漫, 王超, 王诗平, 程晓达 2012 61 084701]

    [16]

    Duocastella M, Fernndez-Pradas J M, Serra P, Morenza J L 2008 Appl. Phys. A 93 453

    [17]

    Robinson P B, Blake J R, Kodama T, Shima A, Tomita Y 2001 J. Appl. Phys. 89 8225

    [18]

    Unger C, Gruene M, Koch L, Koch J, Chichkov B N 2011 Appl. Phys. A 103 271

    [19]

    Zong S G, Wang J A, Liu T, Guo G L 2011 Explosion and Shock Waves 31 641 (in Chinese)[宗思光, 王江安, 刘涛, 郭广立 2011 爆炸与冲击 31 641]

    [20]

    Liu T, Wang J A, Zong S G, Liang S Y 2012 Acta Opt. Sin. 32 0714003 (in Chinese)[刘涛, 王江安, 宗思光, 梁善勇 2012 光学学报 32 0714003]

    [21]

    Taib B B 1985 Ph. D. Dissertation (NSW, Australia:University of Wollongong)

    [22]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479

    [23]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 181 197

    [24]

    Blake J R, Gibson D C 1981 J. Fluid Mech. 111 123

    [25]

    Zhang Y L, Yeo K S, Khoo B C, Wang C 2001 J. Comp. Phys. 166 336

    [26]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Theor. Comp. Fluid Dyn. 8 73

    [27]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Comp. Fluids 25 607

    [28]

    Qi D M, Lu C J 1998 J. Shanghai Jiaotong Univ. 32 50 (in Chinese)[戚定满, 鲁传敬 1998 上海交通大学学报 32 50]

    [29]

    Zhang Z Y, Wang Q D, Zhang H S 2005 Chin. J. Theor. Appl. Mech. 37 100 (in Chinese)[张振宇, 王起棣, 张慧生 2005 力学学报 37 100]

    [30]

    Zhang A M, Yao X L, Yu X B 2007 J. Sou. Vib. 311 1196

    [31]

    Wang J X, Zong Z, Sun L, Li Z R, Jiang M Z 2016 J. Hydrodyn. 28 52

    [32]

    Han R, Zhang A M, Li S 2014 Chin. Phys. B 23 034703

    [33]

    Li S, Zhang A M, Wang S P 2013 Acta Phys. Sin. 62 194703 (in Chinese)[李帅, 张阿漫, 王诗平 2013 62 194703]

  • [1]

    Brennen C E 1995 Cavitation and Bubble Dynamics(New York:Oxford University Press) pp47-107

    [2]

    Plesset M S, Prosperetti A 2003 Annu. Rev. Fluid Mech. 9 145

    [3]

    Wang B, Zhang Y P, Wang Y P 2012 Chin. J. High Pressure Phys. 26 577 (in Chinese)[汪斌, 张远平, 王彦平 2012 高压 26 577]

    [4]

    Klaseboer E, Hung K C, Wang C, Wang C W, Khoo B C, Boyce P 2005 J. Fluid Mech. 537 387

    [5]

    Saurel R, Abgrall R 2000 Siam. J. Sci. Comput. 21 1115

    [6]

    Geers T L, Hunter K S 2002 J. Acoust. Soc. Am. 111 1584

    [7]

    Wang C, Khoo B C 2004 J. Comput. Phys. 194 451

    [8]

    Cole R H (translated by Luo Y J, Han R Z, Guan X) 1965 Underwater Explosion (Beijing:National Defence Industry Press) pp231-235 (in Chinese)[库尔R H 著(罗耀杰, 韩润泽, 官信 译) 1965 水下爆炸 (北京:国防工业出版社) 第231235页]

    [9]

    Kedrinskii V K (translated by Knyazeva S Y) 2005 Hydrodynamics of Explosion:Experiments and Models (Heidelberg:Springer) pp313-353

    [10]

    Pearson A, Blake J R, Otto S R 2004 J. Eng. Math. 48 391

    [11]

    Wang S S, Li M, Ma F 2014 Acta Phys. Sin. 63 194703 (in Chinese)[王树山, 李梅, 马峰 2014 63 194703]

    [12]

    Hung C F, Hwangfu J J 2010 J. Fluid Mech. 651 55

    [13]

    Li J, Rong J L 2011 Ocean Eng. 38 1861

    [14]

    Dadvand A, Khoo B C, Shervani-Tabar M T 2009 Exp. Fluids 46 419

    [15]

    Zhang A M, Wang C, Wang S P, Cheng X D 2012 Acta Phys. Sin. 61 084701 (in Chinese)[张阿漫, 王超, 王诗平, 程晓达 2012 61 084701]

    [16]

    Duocastella M, Fernndez-Pradas J M, Serra P, Morenza J L 2008 Appl. Phys. A 93 453

    [17]

    Robinson P B, Blake J R, Kodama T, Shima A, Tomita Y 2001 J. Appl. Phys. 89 8225

    [18]

    Unger C, Gruene M, Koch L, Koch J, Chichkov B N 2011 Appl. Phys. A 103 271

    [19]

    Zong S G, Wang J A, Liu T, Guo G L 2011 Explosion and Shock Waves 31 641 (in Chinese)[宗思光, 王江安, 刘涛, 郭广立 2011 爆炸与冲击 31 641]

    [20]

    Liu T, Wang J A, Zong S G, Liang S Y 2012 Acta Opt. Sin. 32 0714003 (in Chinese)[刘涛, 王江安, 宗思光, 梁善勇 2012 光学学报 32 0714003]

    [21]

    Taib B B 1985 Ph. D. Dissertation (NSW, Australia:University of Wollongong)

    [22]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479

    [23]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 181 197

    [24]

    Blake J R, Gibson D C 1981 J. Fluid Mech. 111 123

    [25]

    Zhang Y L, Yeo K S, Khoo B C, Wang C 2001 J. Comp. Phys. 166 336

    [26]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Theor. Comp. Fluid Dyn. 8 73

    [27]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Comp. Fluids 25 607

    [28]

    Qi D M, Lu C J 1998 J. Shanghai Jiaotong Univ. 32 50 (in Chinese)[戚定满, 鲁传敬 1998 上海交通大学学报 32 50]

    [29]

    Zhang Z Y, Wang Q D, Zhang H S 2005 Chin. J. Theor. Appl. Mech. 37 100 (in Chinese)[张振宇, 王起棣, 张慧生 2005 力学学报 37 100]

    [30]

    Zhang A M, Yao X L, Yu X B 2007 J. Sou. Vib. 311 1196

    [31]

    Wang J X, Zong Z, Sun L, Li Z R, Jiang M Z 2016 J. Hydrodyn. 28 52

    [32]

    Han R, Zhang A M, Li S 2014 Chin. Phys. B 23 034703

    [33]

    Li S, Zhang A M, Wang S P 2013 Acta Phys. Sin. 62 194703 (in Chinese)[李帅, 张阿漫, 王诗平 2013 62 194703]

  • [1] Zhou Shao-Tong, Mo Teng-Fu, Ren Xiao-Dong, Xu Qiang, Sun Qi-Zhi, Zhang Si-Qun, Huang Xian-Bin, Zhang Zhao-Hui, Liu Wen-Yan. Experimental study on pulsation and energy characteristics of bubbles produced by underwater electrical explosion. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20240720
    [2] Zhao Chang, Ji Xian-Bing, Yang Yu-Hao, Meng Yu-Hang, Xu Jin-Liang, Peng Jia-Lue. Behavior characteristics of Janus particles impacting bubbles. Acta Physica Sinica, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [3] Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo. Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [4] Wang Xiao-Hu, Yi Shi-He, Fu Jia, Lu Xiao-Ge, He Lin. Experimental investigation on surface heat transfer characteristics of hypersonic two-dimensional rearward-facing step flow. Acta Physica Sinica, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [5] Zhou Nan, Chen Shuo. The study of fluid with free surface by many-body dissipative particle dynamics. Acta Physica Sinica, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [6] Li Shuai, Zhang A-Man. Study on a rising bubble bouncing near a rigid boundary. Acta Physica Sinica, 2014, 63(5): 054705. doi: 10.7498/aps.63.054705
    [7] Wang Shu-Shan, Li Mei, Ma Feng. Dynamics of the interaction between explosion bubble and free surface. Acta Physica Sinica, 2014, 63(19): 194703. doi: 10.7498/aps.63.194703
    [8] Chen Liang, Guo Ren-Yong, Ta Na. Simulation and experimental results of evacuation of pedestrian flow in a classroom with two exits. Acta Physica Sinica, 2013, 62(5): 050506. doi: 10.7498/aps.62.050506
    [9] Ni Bao-Yu, Li Shuai, Zhang A-Man. Jet splitting after bubble breakup at the free surface. Acta Physica Sinica, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [10] Li Shuai, Zhang A-Man, Wang Shi-Ping. Experimental and numerical studies on “crown” spike generated by a bubble near free-surface. Acta Physica Sinica, 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [11] Zhang A-Man, Xiao Wei, Wang Shi-Ping, Cheng Xiao-Ou. Experimental study of the interactions between a pulsating bubble and sand particles with different diameters. Acta Physica Sinica, 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [12] Liu Yun-Long, Wang Yu, Zhang A-Man. Interaction between bubble and free surface near vertical wall with inclination. Acta Physica Sinica, 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [13] Wang Shi-Ping, Zhang A-Man, Liu Yun-Long, Wu Chao. Experimental research on bubble dynamics near circular hole of plate. Acta Physica Sinica, 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [14] Zhang A-Man, Wang Chao, Wang Shi-Ping, Cheng Xiao-Da. Experimental study of interaction between bubble and free surface. Acta Physica Sinica, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [15] Wang Gong-Tang, Liu Xiu-Xi. Studies on the mechanisms of enhancing the performances of thyristors by Ga-Al doping. Acta Physica Sinica, 2010, 59(3): 1964-1969. doi: 10.7498/aps.59.1964
    [16] Zhang A-Man, Yao Xiong-Liang. The law of the bubble motion near the wall. Acta Physica Sinica, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [17] Zhang A-Man, Yao Xiong-Liang. The law of the underwater explosion bubble motion near free surface. Acta Physica Sinica, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [18] Zhang Hua-Wei, Li Yan-Xiang. Study on bubble nucleation in liquid metal. Acta Physica Sinica, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [19] Zhang Jian-Min, Xu Ke-Wei. Investigation of abnormal grain growth andtexture change in Ag and Cu films. Acta Physica Sinica, 2003, 52(1): 145-149. doi: 10.7498/aps.52.145
    [20] Gao Bo, Zhang Han-Hong, Zhang Chi. Experimental investigation of bublles by underwater wire exploding. Acta Physica Sinica, 2003, 52(7): 1714-1719. doi: 10.7498/aps.52.1714
Metrics
  • Abstract views:  6980
  • PDF Downloads:  401
  • Cited By: 0
Publishing process
  • Received Date:  08 September 2016
  • Accepted Date:  26 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map