-
水下爆炸气泡脉动产生的压力波及滞后流可以对舰船的整体结构产生破坏作用。本文介绍了采用电爆炸丝的技术途径开展水下爆炸气泡的初步实验研究工作,重点聚焦于气泡的宏观物理特征、运动规律、以及与传统化爆气泡的差异。实验装置主要由2个并联的储能放电模块和爆炸水箱组成。每个模块由2台20 μF的电容器以及位于电容器之间的气体放电开关串联构成。负载采用了1根直径0.9 mm、长度50 mm的纯铜丝。实验结果显示,铜丝被电离后形成等离子体的最高能量密度与TNT相当;等离子体在膨胀过程中汽化周围的水介质并逐渐演变为气泡;气泡的总脉动次数不超过4次,内部的主要成分应该为铜蒸汽和水蒸汽,并在能量耗尽后直接溃灭于水中。通过实验数据与现有理论运动模型的比较发现,气泡在膨胀阶段汽化水介质导致一定的内能损耗,使得其运动轨迹的模拟结果与实验数据具有一定差异。Low-frequency hysteresis flow and pulsating pressure caused by underwater explosion bubbles can cause overall damage to ships. The hydrodynamic and energy conversion of bubbles are very important to study underwater explosion bubbles. At present the study of bubble dynamics is based on ideal gas hypothesis, which is without thermal exchange and only suitable for bubbles of chemical detonating, but not for bubbles with higher temperature. The experimental study on the evolution of underwater explosion bubbles was carried out by underwater exploding wire. There is obvious thermal exchange during the evolution of bubbles, that is different from bubble behavior in chemical detonating underwater. Pulsating behavior and energy characteristic of bubbles are the focus of this study, as well as the difference from chemical detonating. The experimental facility is mainly composed of two parallel energy storage-discharge modules and a water tank. Each module is composed of two 20 μF capacitors and a gas switch located between the capacitors in series. A copper wire with a diameter of 0.9 mm and a length of 50 mm was used as the load. The experimental results show that the deposited energy density generated by electric explosion is almost equal to that of TNT. The wire plasma expansion produces an initial bubble with temperature radially spatial distribution. The times of bubble pulsation are less than 4. After energy exhaustion, bubbles collapse directly into water because the main component is metal vapor. By comparing the experimental data with the existing theoretical models, it is found that the vaporization of water in bubble expansion stage leads to certain energy loss, which makes difference on the motion trajectory of bubbles between the simulation and the experiment. This paper provides ideas and data support for the dynamic study of high temperature bubbles in underwater explosion.
-
Keywords:
- underwater explosion /
- bubbles /
- underwater electrical explosion /
- bubble pulsation
-
[1] Rayleigh L 1917 Philos. Mag. 34 94
[2] Cole R H 1948 Underwater Explosion (Princeton University Press)
[3] Plesset M 1949 J. Appl. Mech. 16 277
[4] Gilmore F 1952 Tech. Report No. 26-4
[5] Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628
[6] Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457
[7] Lezzi A, Prosperetti A 1987 J. Fluid Mech. 185 289
[8] Best J 1991 Ph. D. Dissertation (Wollongong University)
[9] Geers T L, Hunter K S 2002 J. Acoust. Soc. Am. 111 1584
[10] Yao X L, Wang Y, Zhang A M 2012 Bubble Dynamics of Underwater Explosion (Harbin: Harbin Engineering University Press) (in Chinese) [姚熊亮, 汪玉, 张阿漫, 水下爆炸气泡动力学 2012 (哈尔滨: 哈尔滨工程大学出版社)]
[11] Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 0339 (in Chinese) [张阿漫, 姚熊亮2008 57 0339]
[12] Zhang A M, Yao X L, Li J 2008 Acta Phys. Sin. 57 1672 (in Chinese) [张阿漫, 姚熊亮, 李佳 2008 57 1672]
[13] Zhang A M, Wang C, Wang S P, Cheng X D 2012 Acta Phys. Sin. 61 084701 (in Chinese) [张阿漫, 王超, 王诗平, 程晓达 2012 61 084701]
[14] Ye X, Yao X L, Zhang A M, Pang F Z 2013 Acta Phys. Sin. 62 114702 (in Chinese) [叶曦, 姚熊亮, 张阿漫, 庞福振 2013 62 114702]
[15] Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701 (in Chinese) [李帅, 孙龙泉, 张阿漫 2014 63 184701]
[16] Duan W C, Song P, Hu H W, Yang Q, Feng H Y 2022 Blasting 39 140 (in Chinese) [段超伟, 宋浦, 胡宏伟, 杨青, 冯海云 2022 爆破 39 140]
[17] Zhang A M, Li S M, Cui P 2023 Phys. Fluids 35 033323
[18] Zhang A M, Ming F R, Liu Y L, Li S, Wang S P 2023 Chin. J. Ship Res. 18 139 (in Chinese) [张阿漫, 明付仁, 刘云龙, 李帅, 王诗平 2023 中国舰船研究 18 139]
[19] Thomsen J M, Ruhl S F 1980 Phys. Int. Co. AD-A107804
[20] Kriebel A R, Bechtel J S 1970 URS Res. Co. AD-706074
[21] Buntzen R R 1962 USRDL Tech. Report No. 195
[22] Hege J S 1963 Def. Doc. Center AD-401342
[23] Zhou Q, Zhang Q G, Zhang J, Zhao J P, Ren B Z, Pang L 2011 Plasma Sci. Tech. 11 661
[24] Han R Y, Wu J W, Zhou H B, Qiu A C 2017 Trans. Chin. ET Soc. 32 257 (in Chinese) [韩若愚, 吴佳玮, 周海滨, 邱爱慈 2017 电工技术学报 32 257]
[25] Wu J, Yin G F, Fan Y F, Li X W, Qiu A C 2018 High Voltage Engin. 44 4003 (in Chinese) [吴坚, 阴国锋, 范云飞, 李兴文, 邱爱慈 2018 高电压技术 44 4003]
[26] Qian D, Liu Z G, Zou X B, Wang X X 2021 High Voltage Engin. 47 815 (in Chinese) [钱盾, 刘志刚, 邹晓兵, 王新新 2021 高电压技术47 815]
[27] Antonov O, Gilburd L, Efimov S, Bazalitski G, Gurovich V T, Krasik Y E 2012 Phys. Plasmas 19 102702
[28] Lauterborn W, Bolle H 1975 J. Fluid Mech. 72 391
[29] Zong S G, Wang J A, Liu T, Guo G L 2011 Explosion and Shock Waves 31 0641 (in Chinese) [宗思光, 王江安, 刘涛, 郭广立 2011 爆炸与冲击 31 0641]
[30] Jia Z W, Li D, Tian Y, Pan H P, Zhong Q, Yao Z F, Lu Y, Guo J J, Zheng R E 2023 Spectrochim. Acta B: Atomic Spectroscopy 206 106713
[31] Liang C, Zhang L W, Li X 2004 High Power Laser Part. Beam 16 787 (in Chinese) [梁川, 章林文, 李欣 2004 强激光与粒子束 16 787]
[32] Oreshkin V I, Chaikovsky S A, Ratakhin N A, Grinenko A, Krasik Y E 2007 Phys. Plasmas 14 102703
[33] Zhang A M, Wang S P, Huang C, Wang B, 2013 Eur. J. Mech. B: Fluids 42 69
[34] Kolacek K, Prukner V, Schmidt J, Frolovo O, Straus J 2010 Laser Part. Beams 28 61
[35] Wang Q X 2013 Phys. Fluids 25 072104
计量
- 文章访问数: 25
- PDF下载量: 1
- 被引次数: 0