搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下电爆炸气泡脉动及能量特性实验研究

周少彤 莫腾富 任晓东 徐强 孙奇志 张思群 黄显宾 张朝辉 刘文燕

引用本文:
Citation:

水下电爆炸气泡脉动及能量特性实验研究

周少彤, 莫腾富, 任晓东, 徐强, 孙奇志, 张思群, 黄显宾, 张朝辉, 刘文燕

Experimental study on pulsation and energy characteristics of bubbles produced by underwater electrical explosion

Zhou Shao-Tong, Mo Teng-Fu, Ren Xiao-Dong, Xu Qiang, Sun Qi-Zhi, Zhang Si-Qun, Huang Xian-Bin, Zhang Zhao-Hui, Liu Wen-Yan
PDF
导出引用
  • 水下爆炸气泡脉动产生的压力波及滞后流可以对舰船的整体结构产生破坏作用。本文介绍了采用电爆炸丝的技术途径开展水下爆炸气泡的初步实验研究工作,重点聚焦于气泡的宏观物理特征、运动规律、以及与传统化爆气泡的差异。实验装置主要由2个并联的储能放电模块和爆炸水箱组成。每个模块由2台20 μF的电容器以及位于电容器之间的气体放电开关串联构成。负载采用了1根直径0.9 mm、长度50 mm的纯铜丝。实验结果显示,铜丝被电离后形成等离子体的最高能量密度与TNT相当;等离子体在膨胀过程中汽化周围的水介质并逐渐演变为气泡;气泡的总脉动次数不超过4次,内部的主要成分应该为铜蒸汽和水蒸汽,并在能量耗尽后直接溃灭于水中。通过实验数据与现有理论运动模型的比较发现,气泡在膨胀阶段汽化水介质导致一定的内能损耗,使得其运动轨迹的模拟结果与实验数据具有一定差异。
    Low-frequency hysteresis flow and pulsating pressure caused by underwater explosion bubbles can cause overall damage to ships. The hydrodynamic and energy conversion of bubbles are very important to study underwater explosion bubbles. At present the study of bubble dynamics is based on ideal gas hypothesis, which is without thermal exchange and only suitable for bubbles of chemical detonating, but not for bubbles with higher temperature. The experimental study on the evolution of underwater explosion bubbles was carried out by underwater exploding wire. There is obvious thermal exchange during the evolution of bubbles, that is different from bubble behavior in chemical detonating underwater. Pulsating behavior and energy characteristic of bubbles are the focus of this study, as well as the difference from chemical detonating. The experimental facility is mainly composed of two parallel energy storage-discharge modules and a water tank. Each module is composed of two 20 μF capacitors and a gas switch located between the capacitors in series. A copper wire with a diameter of 0.9 mm and a length of 50 mm was used as the load. The experimental results show that the deposited energy density generated by electric explosion is almost equal to that of TNT. The wire plasma expansion produces an initial bubble with temperature radially spatial distribution. The times of bubble pulsation are less than 4. After energy exhaustion, bubbles collapse directly into water because the main component is metal vapor. By comparing the experimental data with the existing theoretical models, it is found that the vaporization of water in bubble expansion stage leads to certain energy loss, which makes difference on the motion trajectory of bubbles between the simulation and the experiment. This paper provides ideas and data support for the dynamic study of high temperature bubbles in underwater explosion.
  • [1]

    Rayleigh L 1917 Philos. Mag. 34 94

    [2]

    Cole R H 1948 Underwater Explosion (Princeton University Press)

    [3]

    Plesset M 1949 J. Appl. Mech. 16 277

    [4]

    Gilmore F 1952 Tech. Report No. 26-4

    [5]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [6]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457

    [7]

    Lezzi A, Prosperetti A 1987 J. Fluid Mech. 185 289

    [8]

    Best J 1991 Ph. D. Dissertation (Wollongong University)

    [9]

    Geers T L, Hunter K S 2002 J. Acoust. Soc. Am. 111 1584

    [10]

    Yao X L, Wang Y, Zhang A M 2012 Bubble Dynamics of Underwater Explosion (Harbin: Harbin Engineering University Press) (in Chinese) [姚熊亮, 汪玉, 张阿漫, 水下爆炸气泡动力学 2012 (哈尔滨: 哈尔滨工程大学出版社)]

    [11]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 0339 (in Chinese) [张阿漫, 姚熊亮2008 57 0339]

    [12]

    Zhang A M, Yao X L, Li J 2008 Acta Phys. Sin. 57 1672 (in Chinese) [张阿漫, 姚熊亮, 李佳 2008 57 1672]

    [13]

    Zhang A M, Wang C, Wang S P, Cheng X D 2012 Acta Phys. Sin. 61 084701 (in Chinese) [张阿漫, 王超, 王诗平, 程晓达 2012 61 084701]

    [14]

    Ye X, Yao X L, Zhang A M, Pang F Z 2013 Acta Phys. Sin. 62 114702 (in Chinese) [叶曦, 姚熊亮, 张阿漫, 庞福振 2013 62 114702]

    [15]

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701 (in Chinese) [李帅, 孙龙泉, 张阿漫 2014 63 184701]

    [16]

    Duan W C, Song P, Hu H W, Yang Q, Feng H Y 2022 Blasting 39 140 (in Chinese) [段超伟, 宋浦, 胡宏伟, 杨青, 冯海云 2022 爆破 39 140]

    [17]

    Zhang A M, Li S M, Cui P 2023 Phys. Fluids 35 033323

    [18]

    Zhang A M, Ming F R, Liu Y L, Li S, Wang S P 2023 Chin. J. Ship Res. 18 139 (in Chinese) [张阿漫, 明付仁, 刘云龙, 李帅, 王诗平 2023 中国舰船研究 18 139]

    [19]

    Thomsen J M, Ruhl S F 1980 Phys. Int. Co. AD-A107804

    [20]

    Kriebel A R, Bechtel J S 1970 URS Res. Co. AD-706074

    [21]

    Buntzen R R 1962 USRDL Tech. Report No. 195

    [22]

    Hege J S 1963 Def. Doc. Center AD-401342

    [23]

    Zhou Q, Zhang Q G, Zhang J, Zhao J P, Ren B Z, Pang L 2011 Plasma Sci. Tech. 11 661

    [24]

    Han R Y, Wu J W, Zhou H B, Qiu A C 2017 Trans. Chin. ET Soc. 32 257 (in Chinese) [韩若愚, 吴佳玮, 周海滨, 邱爱慈 2017 电工技术学报 32 257]

    [25]

    Wu J, Yin G F, Fan Y F, Li X W, Qiu A C 2018 High Voltage Engin. 44 4003 (in Chinese) [吴坚, 阴国锋, 范云飞, 李兴文, 邱爱慈 2018 高电压技术 44 4003]

    [26]

    Qian D, Liu Z G, Zou X B, Wang X X 2021 High Voltage Engin. 47 815 (in Chinese) [钱盾, 刘志刚, 邹晓兵, 王新新 2021 高电压技术47 815]

    [27]

    Antonov O, Gilburd L, Efimov S, Bazalitski G, Gurovich V T, Krasik Y E 2012 Phys. Plasmas 19 102702

    [28]

    Lauterborn W, Bolle H 1975 J. Fluid Mech. 72 391

    [29]

    Zong S G, Wang J A, Liu T, Guo G L 2011 Explosion and Shock Waves 31 0641 (in Chinese) [宗思光, 王江安, 刘涛, 郭广立 2011 爆炸与冲击 31 0641]

    [30]

    Jia Z W, Li D, Tian Y, Pan H P, Zhong Q, Yao Z F, Lu Y, Guo J J, Zheng R E 2023 Spectrochim. Acta B: Atomic Spectroscopy 206 106713

    [31]

    Liang C, Zhang L W, Li X 2004 High Power Laser Part. Beam 16 787 (in Chinese) [梁川, 章林文, 李欣 2004 强激光与粒子束 16 787]

    [32]

    Oreshkin V I, Chaikovsky S A, Ratakhin N A, Grinenko A, Krasik Y E 2007 Phys. Plasmas 14 102703

    [33]

    Zhang A M, Wang S P, Huang C, Wang B, 2013 Eur. J. Mech. B: Fluids 42 69

    [34]

    Kolacek K, Prukner V, Schmidt J, Frolovo O, Straus J 2010 Laser Part. Beams 28 61

    [35]

    Wang Q X 2013 Phys. Fluids 25 072104

  • [1] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征.  , doi: 10.7498/aps.71.20220632
    [2] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 弹性介质包围的球形液体腔中气泡和粒子的相互作用.  , doi: 10.7498/aps.69.20200764
    [3] 史冬岩, 王志凯, 张阿漫. 相同尺度下气泡与复杂壁面的耦合特性研究.  , doi: 10.7498/aps.63.174701
    [4] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究.  , doi: 10.7498/aps.63.054705
    [5] 王树山, 李梅, 马峰. 爆炸气泡与自由水面相互作用动力学研究.  , doi: 10.7498/aps.63.194703
    [6] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的近平板圆孔气泡动力学行为研究.  , doi: 10.7498/aps.62.144703
    [7] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究.  , doi: 10.7498/aps.62.124704
    [8] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法.  , doi: 10.7498/aps.62.060704
    [9] 李帅, 张阿漫, 王诗平. 气泡引起的皇冠型水冢实验与数值研究.  , doi: 10.7498/aps.62.194703
    [10] 王诗平, 张阿漫, 刘云龙, 吴超. 圆形破口附近气泡动态特性实验研究.  , doi: 10.7498/aps.62.064703
    [11] 张阿漫, 肖巍, 王诗平, 程潇欧. 不同沙粒底面下气泡脉动特性实验研究.  , doi: 10.7498/aps.62.014703
    [12] 刘云龙, 汪玉, 张阿漫. 有倾角的竖直壁面附近气泡与自由面相互作用研究.  , doi: 10.7498/aps.62.214703
    [13] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟.  , doi: 10.7498/aps.61.150501
    [14] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究.  , doi: 10.7498/aps.61.084701
    [15] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究.  , doi: 10.7498/aps.61.224702
    [16] 王诗平, 张阿漫, 刘云龙, 姚熊亮. 气泡与弹性膜的耦合效应数值模拟.  , doi: 10.7498/aps.60.054702
    [17] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究.  , doi: 10.7498/aps.57.1662
    [18] 蒋 丹, 李松晶, 包 钢. 采用遗传算法对压力脉动过程中气泡模型参数的辨识.  , doi: 10.7498/aps.57.5072
    [19] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究.  , doi: 10.7498/aps.57.339
    [20] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析.  , doi: 10.7498/aps.56.4864
计量
  • 文章访问数:  25
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-21

/

返回文章
返回
Baidu
map