Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of electrical control magnetization reversal and domain wall motion

Zhang Nan Zhang Bao Yang Mei-Yin Cai Kai-Ming Sheng Yu Li Yu-Cai Deng Yong-Cheng Wang Kai-You

Citation:

Progress of electrical control magnetization reversal and domain wall motion

Zhang Nan, Zhang Bao, Yang Mei-Yin, Cai Kai-Ming, Sheng Yu, Li Yu-Cai, Deng Yong-Cheng, Wang Kai-You
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Electrical control of spins in magnetic materials and devices is one of the most important research topics in spintronics. We briefly describe the recent progress of electrical manipulations of magnetization reversal and domain wall motion.This review consists of three parts:basic concepts,magnetization manipulation by electrical current and voltage methods,and the future prospects of the field.The basic concepts,including the generation of the spin current,the interaction between the spin current and localized magnetization,and the magnetic dynamic Landau-Lifshitz-Gilbert-Slonczewski equation are introduced first.In the second part,we reviewed the progress of the magnetization controlled by electrical current and voltage. Firstly we review the electrical current control of the magnetization and domain wall motion.Three widely used structures, single-layer magnets,ferromagnet/heavy metal and ferromagnet/nonmagnetic metal/ferromagnet,are reviewed when current is used to induce magnetization reversal or drive domain wall motion.In a single-layer magnetic material structure,domain wall can be effectively driven by electrical current through spin transfer torque.The factors influencing the domain wall trapping and motion are also discussed.The electrical current control of the skyrmions has big potential applications due to much lower current density.Using the Dresselhaus and Rashba spin orbital coupling,the electrical current can also directly reverse the magnetization of single magnetic or antiferromagnetic layer.Then,we review the electrical current switching the magnetization of the ferromagnetic layer in ferromagnetic/heavy metal structures,where both spin Hall effect and Rashba effect can contribute to the current switching magnetization in such device structures. To identify the relative contributions of these two mechanisms,several quantitative studies are carried,concluding that spin Hall effect plays a major role,which is summarized in this review.Finally,we review the current switching magnetization of free layers in spin valve and magnetic tunnel junctions (MTJs) by spin transfer torque.We also discuss the approaches to the decrease of the critical current density in MTJs,which is desired for future applications.Alternatively,the electric field can also be used to manipulate the magnetization,where three methods are reviewed. Applying an electric field to the ferromagnetic/piezoelectric heterostructures,which changes the crystal structure of magnetic film through piezoelectric effects,realizes the change of the magnetic anisotropy of the ferromagnetic layer.In ferromagnetic/ferroelectric heterostructures,electric field changes the spin distribution and orbital hybridization at the surface of magnetic film through the magnet-electric coupling effects,and then controls the magnetization of the ferromagnetic layer.In ferromagnetic metal (semiconductor)/dielectric/metal structure,electric field controls the electron accumulation or depletion at the surface of the ferromagnetic metal or semiconductor,the change of the electron density in the magnetic layer in turn affects the magnetic exchange interaction and magnetic anisotropy.Finally,we present the prospects for the development of electrical control magnetization reversal and domain wall motion for future applications.
      Corresponding author: Wang Kai-You, kywang@semi.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB643903) and the National Natural Science Foundation of China (Grant Nos. 61225021, 11174272, 11474272).
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [2]

    Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 990

    [3]

    Li Z, Zhang S 2004 Phys. Rev. B 70 024417

    [4]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [5]

    Berger L 1978 J. Appl. Phys. 49 2156

    [6]

    Freitas P, Berger L 1985 J. Appl. Phys. 57 1266

    [7]

    Wang K, Irvine A, Wunderlich J, Edmonds K, Rushforth A, Campion R, Foxon C, Williams D, Gallagher B 2008 New J. Phys. 10 085007

    [8]

    Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539

    [9]

    Wang K, Irvine A, Campion R, Foxon C, Wunderlich J, Williams D, Gallagher B 2009 J. Magn. Magn. Mater. 321 971

    [10]

    Wang K, Edmonds K, Irvine A, Tatara G, de Ranieri E, Wunderlich J, Olejnik K, Rushforth A, Campion R, Williams D 2010 Appl. Phys. Lett. 97 262102

    [11]

    Bauer U, Emori S, Beach G S 2013 Nature Nanotech. 8 411

    [12]

    Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A 2011 Nature Mater. 10 419

    [13]

    Parkin S S 2004 US Patent 6834005[2004]

    [14]

    Parkin S S, Hayashi M, Thomas L 2008 Science 320 190

    [15]

    Thomas L, Yang S H, Ryu K S, Hughes B, Rettner C, Wang D S, Tsai C H, Shen K H, Parkin S S P 2009 Nature Phys. 5 656

    [16]

    Endo M, Matsukura F, Ohno H 2010 Appl. Phys. Lett. 97 222501

    [17]

    Fang D, Kurebayashi H, Wunderlich J, Vyborny K, Zarbo L, Campion R, Casiraghi A, Gallagher B, Jungwirth T, Ferguson A 2011 Nature Nanotech. 6 413

    [18]

    Li Y, Cao Y, Wei G, Li Y, Ji Y, Wang K, Edmonds K, Campion R, Rushforth A, Foxon C 2013 Appl. Phys. Lett. 103 022401

    [19]

    Marti X, Fina I, Frontera C, Liu J, Wadley P, He Q, Paull R, Clarkson J, Kudrnovsky J, Turek I 2014 Nature Mater. 13 367

    [20]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nature Nanotech. 11 231

    [21]

    Keffer F, Kittel C 1952 Phys. Rev. 85 329

    [22]

    Jonietz F, Mhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R 2010 Science 330 1648

    [23]

    Yu X, Kanazawa N, Zhang W, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [24]

    Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H 2015 Adv. Electron. Mater. 1 1500076

    [25]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E 2016 Adv. Mater. 28 6887

    [26]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189

    [27]

    Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P 2010 Nature Mater. 9 230

    [28]

    Liu L, Pai C F, Li Y, Tseng H, Ralph D, Buhrman R 2012 Science 336 555

    [29]

    Liu L, Lee O, Gudmundsen T, Ralph D, Buhrman R 2012 Phys. Rev. Lett. 109 096602

    [30]

    Fan X, Wu J, Chen Y, Jerry M J, Zhang H, Xiao J Q 2013 Nat. Commun. 4 1799

    [31]

    Yang M, Cai K, Ju H, Edmonds K W, Yang G, Liu S, Li B, Zhang B, Sheng Y, Wang S 2016 Sci. Rep. 6 20778

    [32]

    Lee O, Liu L, Pai C, Li Y, Tseng H, Gowtham P, Park J, Ralph D, Buhrman R 2014 Phys. Rev. B 89 024418

    [33]

    Bhowmik D, You L, Salahuddin S 2014 Nature Nanotech. 9 59

    [34]

    Qiu X, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W, Yang H 2015 Nature Nanotech. 10 333

    [35]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nature Mater. 12 611

    [36]

    Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y 2014 Nature Nanotech. 9 548

    [37]

    Pai C F, Mann M, Tan A J, Beach G S 2016 arXiv:1601.05854[cond-mat.mtrl-sci]

    [38]

    Yu G, Chang L T, Akyol M, Upadhyaya P, He C, Li X, Wong K L, Amiri P K, Wang K L 2014 Appl. Phys. Lett. 105 102411

    [39]

    Akyol M, Yu G, Alzate J G, Upadhyaya P, Li X, Wong K L, Ekicibil A, Amiri P K, Wang K L 2015 Appl. Phys. Lett. 106 162409

    [40]

    You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 Proc. Nat. Acad. Sci. USA 112 10310

    [41]

    Torrejon J, Garcia-Sanchez F, Taniguchi T, Sinha J, Mitani S, Kim J V, Hayashi M 2015 Phys. Rev. B 91 214434

    [42]

    Brink A V D, Vermijs, G, Solignac A, Koo J, Kohlhepp J T, Swagten H J, Koopmans B 2016 Nat. Commun. 7 10854

    [43]

    Fukami S, Zhang C, Dutta Gupta S, Kurenkov A, Ohno H 2016 Nature Mater. 15 535

    [44]

    Cai K, Yang M, Ju H, Edmonds K W, Li B, Sheng Y, Zhang B, Zhang N, Liu S, Ji Y 2016 arXiv:1604.05561[cond-mat.mtrl-sci]

    [45]

    Katine J, Albert F, Buhrman R, Myers E, Ralph D 2000 Phys. Rev. Lett. 84 3149

    [46]

    Huai Y, Albert F, Nguyen P, Pakala M, Valet T 2004 Appl. Phys. Lett. 84 3118

    [47]

    Fuchs G, Emley N, Krivorotov I, Braganca P, Ryan E, Kiselev S, Sankey J, Katine J, Ralph D, Buhrman R 2004 Appl. Phys. Lett. 85 1205

    [48]

    Sun J Z 2000 Phys. Rev. B 62 570

    [49]

    Mangin S, Ravelosona D, Katine J, Carey M, Terris B, Fullerton E E 2006 Nature Mater. 5 210

    [50]

    Yagami K, Tulapurkar A, Fukushima A, Suzuki Y 2004 Appl. Phys. Lett. 85 5634

    [51]

    Khvalkovskiy A, Apalkov D, Watts S, Chepulskii R, Beach R, Ong A, Tang X, Driskill-Smith A, Butler W, Visscher P 2013 J. Phys. D:Appl. Phys. 46 074001

    [52]

    Albert F, Emley N, Myers E, Ralph D, Buhrman R 2002 Phys. Rev. Lett. 89 226802

    [53]

    Jiang Y, Abe S, Ochiai T, Nozaki T, Hirohata A, Tezuka N, Inomata K 2004 Phys. Rev. Lett. 92 167204

    [54]

    Jiang Y, Nozaki T, Abe S, Ochiai T, Hirohata A, Tezuka N, Inomata K 2004 Nature Mater. 3 361

    [55]

    Hosomi M, Yamagishi H, Yamamoto T, Bessho K, Higo Y, Yamane K, Yamada H, Shoji M, Hachino H, Fukumoto C 2005 IEDM Tech. Dig. IEEE Int. Washington, D.C, US, December 5-72005, p459

    [56]

    Eerenstein W, Mathur N, Scott J F 2006 Nature 442 759

    [57]

    Li Y, Luo W, Zhu L, Zhao J, Wang K, Wang K Y 2015 J. Magn. Magn. Mater. 375 148

    [58]

    Zhang B, Meng K K, Yang M Y, Edmonds K, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z, Wang K Y 2016 Sci. Rep. 6 28458

    [59]

    Hu J M, Yang T, Wang J, Huang H, Zhang J, Chen L Q, Nan C W 2015 Nano Lett. 15 616

    [60]

    Li P, Chen A, Li D, Zhao Y, Zhang S, Yang L, Liu Y, Zhu M, Zhang H, Han X 2014 Adv. Mater. 26 4320

    [61]

    Zhang S, Zhao Y, Li P, Yang J, Rizwan S, Zhang J, Seidel J, Qu T, Yang Y, Luo Z 2012 Phys. Rev. Lett. 108 137203

    [62]

    Moubah R, Magnus F, Hjörvarsson B, Andersson G 2014 J. Appl. Phys. 115 053905

    [63]

    Wu H, Chai G, Zhou T, Zhang Z, Kitamura T, Zhou H 2014 J. Appl. Phys. 115 114105

    [64]

    Wang J, Hu J, Yang T, Feng M, Zhang J, Chen L, Nan C 2014 Sci. Rep. 4 4553

    [65]

    Rushforth A, de Ranieri E, Zemen J, Wunderlich J, Edmonds K, King C, Ahmad E, Campion R, Foxon C, Gallagher B 2008 Phys. Rev. B 78 085314

    [66]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C 2013 Nat. Commun. 4 1378

    [67]

    Dean J, Bryan M, Schrefl T, Allwood D 2011 J. Appl. Phys. 109 023915

    [68]

    Wu T, Zurbuchen M, Saha S, Wang R V, Streiffer S, Mitchell J 2006 Phys. Rev. B 73 134416

    [69]

    Duan C G, Jaswal S S, Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201

    [70]

    Cherifi R O, Ivanovskaya V, Phillips L C, Zobelli A, Infante I C, Jacquet E, Garcia V, Fusil S, Briddon P R, Guiblin N, Mougin, Unal A A, Kronast F, Valencia, Dkhil B, Barthelemy A, Bibes M 2014 Nature Mater. 13 345

    [71]

    Nan T, Zhou Z, Liu M, Yang X, Gao Y, Assaf B A, Lin H, Velu S, Wang X, Luo H 2014 Sci. Rep. 4 3688

    [72]

    Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A, Shinjo T, Shiraishi M, Mizukami S 2009 Nature Nanotech. 4 158

    [73]

    Yan Y, Zhou X, Li F, Cui B, Wang Y, Wang G, Pan F, Song C 2015 Appl. Phys. Lett. 107 122407

    [74]

    Wang W G, Li M, Hageman S, Chien C 2012 Nature Mater. 11 64

    [75]

    Kita K, Abraham D W, Gajek M J, Worledge D 2012 J. Appl. Phys. 112 033919

    [76]

    Li X, Yu G, Wu H, Ong P, Wong K, Hu Q, Ebrahimi F, Upadhyaya P, Akyol M, Kioussis N 2015 Appl. Phys. Lett. 107 142403

    [77]

    Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamura K, Kobayashi K, Ono T 2012 Nat. Commun. 3 888

    [78]

    Bauer U, Emori S, Beach G S 2012 Appl. Phys. Lett. 100 192408

    [79]

    Bauer U, Emori S, Beach G S 2012 Appl. Phys. Lett. 101 172403

  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [2]

    Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 990

    [3]

    Li Z, Zhang S 2004 Phys. Rev. B 70 024417

    [4]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [5]

    Berger L 1978 J. Appl. Phys. 49 2156

    [6]

    Freitas P, Berger L 1985 J. Appl. Phys. 57 1266

    [7]

    Wang K, Irvine A, Wunderlich J, Edmonds K, Rushforth A, Campion R, Foxon C, Williams D, Gallagher B 2008 New J. Phys. 10 085007

    [8]

    Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539

    [9]

    Wang K, Irvine A, Campion R, Foxon C, Wunderlich J, Williams D, Gallagher B 2009 J. Magn. Magn. Mater. 321 971

    [10]

    Wang K, Edmonds K, Irvine A, Tatara G, de Ranieri E, Wunderlich J, Olejnik K, Rushforth A, Campion R, Williams D 2010 Appl. Phys. Lett. 97 262102

    [11]

    Bauer U, Emori S, Beach G S 2013 Nature Nanotech. 8 411

    [12]

    Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A 2011 Nature Mater. 10 419

    [13]

    Parkin S S 2004 US Patent 6834005[2004]

    [14]

    Parkin S S, Hayashi M, Thomas L 2008 Science 320 190

    [15]

    Thomas L, Yang S H, Ryu K S, Hughes B, Rettner C, Wang D S, Tsai C H, Shen K H, Parkin S S P 2009 Nature Phys. 5 656

    [16]

    Endo M, Matsukura F, Ohno H 2010 Appl. Phys. Lett. 97 222501

    [17]

    Fang D, Kurebayashi H, Wunderlich J, Vyborny K, Zarbo L, Campion R, Casiraghi A, Gallagher B, Jungwirth T, Ferguson A 2011 Nature Nanotech. 6 413

    [18]

    Li Y, Cao Y, Wei G, Li Y, Ji Y, Wang K, Edmonds K, Campion R, Rushforth A, Foxon C 2013 Appl. Phys. Lett. 103 022401

    [19]

    Marti X, Fina I, Frontera C, Liu J, Wadley P, He Q, Paull R, Clarkson J, Kudrnovsky J, Turek I 2014 Nature Mater. 13 367

    [20]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nature Nanotech. 11 231

    [21]

    Keffer F, Kittel C 1952 Phys. Rev. 85 329

    [22]

    Jonietz F, Mhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R 2010 Science 330 1648

    [23]

    Yu X, Kanazawa N, Zhang W, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [24]

    Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H 2015 Adv. Electron. Mater. 1 1500076

    [25]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E 2016 Adv. Mater. 28 6887

    [26]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189

    [27]

    Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P 2010 Nature Mater. 9 230

    [28]

    Liu L, Pai C F, Li Y, Tseng H, Ralph D, Buhrman R 2012 Science 336 555

    [29]

    Liu L, Lee O, Gudmundsen T, Ralph D, Buhrman R 2012 Phys. Rev. Lett. 109 096602

    [30]

    Fan X, Wu J, Chen Y, Jerry M J, Zhang H, Xiao J Q 2013 Nat. Commun. 4 1799

    [31]

    Yang M, Cai K, Ju H, Edmonds K W, Yang G, Liu S, Li B, Zhang B, Sheng Y, Wang S 2016 Sci. Rep. 6 20778

    [32]

    Lee O, Liu L, Pai C, Li Y, Tseng H, Gowtham P, Park J, Ralph D, Buhrman R 2014 Phys. Rev. B 89 024418

    [33]

    Bhowmik D, You L, Salahuddin S 2014 Nature Nanotech. 9 59

    [34]

    Qiu X, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W, Yang H 2015 Nature Nanotech. 10 333

    [35]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nature Mater. 12 611

    [36]

    Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y 2014 Nature Nanotech. 9 548

    [37]

    Pai C F, Mann M, Tan A J, Beach G S 2016 arXiv:1601.05854[cond-mat.mtrl-sci]

    [38]

    Yu G, Chang L T, Akyol M, Upadhyaya P, He C, Li X, Wong K L, Amiri P K, Wang K L 2014 Appl. Phys. Lett. 105 102411

    [39]

    Akyol M, Yu G, Alzate J G, Upadhyaya P, Li X, Wong K L, Ekicibil A, Amiri P K, Wang K L 2015 Appl. Phys. Lett. 106 162409

    [40]

    You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 Proc. Nat. Acad. Sci. USA 112 10310

    [41]

    Torrejon J, Garcia-Sanchez F, Taniguchi T, Sinha J, Mitani S, Kim J V, Hayashi M 2015 Phys. Rev. B 91 214434

    [42]

    Brink A V D, Vermijs, G, Solignac A, Koo J, Kohlhepp J T, Swagten H J, Koopmans B 2016 Nat. Commun. 7 10854

    [43]

    Fukami S, Zhang C, Dutta Gupta S, Kurenkov A, Ohno H 2016 Nature Mater. 15 535

    [44]

    Cai K, Yang M, Ju H, Edmonds K W, Li B, Sheng Y, Zhang B, Zhang N, Liu S, Ji Y 2016 arXiv:1604.05561[cond-mat.mtrl-sci]

    [45]

    Katine J, Albert F, Buhrman R, Myers E, Ralph D 2000 Phys. Rev. Lett. 84 3149

    [46]

    Huai Y, Albert F, Nguyen P, Pakala M, Valet T 2004 Appl. Phys. Lett. 84 3118

    [47]

    Fuchs G, Emley N, Krivorotov I, Braganca P, Ryan E, Kiselev S, Sankey J, Katine J, Ralph D, Buhrman R 2004 Appl. Phys. Lett. 85 1205

    [48]

    Sun J Z 2000 Phys. Rev. B 62 570

    [49]

    Mangin S, Ravelosona D, Katine J, Carey M, Terris B, Fullerton E E 2006 Nature Mater. 5 210

    [50]

    Yagami K, Tulapurkar A, Fukushima A, Suzuki Y 2004 Appl. Phys. Lett. 85 5634

    [51]

    Khvalkovskiy A, Apalkov D, Watts S, Chepulskii R, Beach R, Ong A, Tang X, Driskill-Smith A, Butler W, Visscher P 2013 J. Phys. D:Appl. Phys. 46 074001

    [52]

    Albert F, Emley N, Myers E, Ralph D, Buhrman R 2002 Phys. Rev. Lett. 89 226802

    [53]

    Jiang Y, Abe S, Ochiai T, Nozaki T, Hirohata A, Tezuka N, Inomata K 2004 Phys. Rev. Lett. 92 167204

    [54]

    Jiang Y, Nozaki T, Abe S, Ochiai T, Hirohata A, Tezuka N, Inomata K 2004 Nature Mater. 3 361

    [55]

    Hosomi M, Yamagishi H, Yamamoto T, Bessho K, Higo Y, Yamane K, Yamada H, Shoji M, Hachino H, Fukumoto C 2005 IEDM Tech. Dig. IEEE Int. Washington, D.C, US, December 5-72005, p459

    [56]

    Eerenstein W, Mathur N, Scott J F 2006 Nature 442 759

    [57]

    Li Y, Luo W, Zhu L, Zhao J, Wang K, Wang K Y 2015 J. Magn. Magn. Mater. 375 148

    [58]

    Zhang B, Meng K K, Yang M Y, Edmonds K, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z, Wang K Y 2016 Sci. Rep. 6 28458

    [59]

    Hu J M, Yang T, Wang J, Huang H, Zhang J, Chen L Q, Nan C W 2015 Nano Lett. 15 616

    [60]

    Li P, Chen A, Li D, Zhao Y, Zhang S, Yang L, Liu Y, Zhu M, Zhang H, Han X 2014 Adv. Mater. 26 4320

    [61]

    Zhang S, Zhao Y, Li P, Yang J, Rizwan S, Zhang J, Seidel J, Qu T, Yang Y, Luo Z 2012 Phys. Rev. Lett. 108 137203

    [62]

    Moubah R, Magnus F, Hjörvarsson B, Andersson G 2014 J. Appl. Phys. 115 053905

    [63]

    Wu H, Chai G, Zhou T, Zhang Z, Kitamura T, Zhou H 2014 J. Appl. Phys. 115 114105

    [64]

    Wang J, Hu J, Yang T, Feng M, Zhang J, Chen L, Nan C 2014 Sci. Rep. 4 4553

    [65]

    Rushforth A, de Ranieri E, Zemen J, Wunderlich J, Edmonds K, King C, Ahmad E, Campion R, Foxon C, Gallagher B 2008 Phys. Rev. B 78 085314

    [66]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C 2013 Nat. Commun. 4 1378

    [67]

    Dean J, Bryan M, Schrefl T, Allwood D 2011 J. Appl. Phys. 109 023915

    [68]

    Wu T, Zurbuchen M, Saha S, Wang R V, Streiffer S, Mitchell J 2006 Phys. Rev. B 73 134416

    [69]

    Duan C G, Jaswal S S, Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201

    [70]

    Cherifi R O, Ivanovskaya V, Phillips L C, Zobelli A, Infante I C, Jacquet E, Garcia V, Fusil S, Briddon P R, Guiblin N, Mougin, Unal A A, Kronast F, Valencia, Dkhil B, Barthelemy A, Bibes M 2014 Nature Mater. 13 345

    [71]

    Nan T, Zhou Z, Liu M, Yang X, Gao Y, Assaf B A, Lin H, Velu S, Wang X, Luo H 2014 Sci. Rep. 4 3688

    [72]

    Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A, Shinjo T, Shiraishi M, Mizukami S 2009 Nature Nanotech. 4 158

    [73]

    Yan Y, Zhou X, Li F, Cui B, Wang Y, Wang G, Pan F, Song C 2015 Appl. Phys. Lett. 107 122407

    [74]

    Wang W G, Li M, Hageman S, Chien C 2012 Nature Mater. 11 64

    [75]

    Kita K, Abraham D W, Gajek M J, Worledge D 2012 J. Appl. Phys. 112 033919

    [76]

    Li X, Yu G, Wu H, Ong P, Wong K, Hu Q, Ebrahimi F, Upadhyaya P, Akyol M, Kioussis N 2015 Appl. Phys. Lett. 107 142403

    [77]

    Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamura K, Kobayashi K, Ono T 2012 Nat. Commun. 3 888

    [78]

    Bauer U, Emori S, Beach G S 2012 Appl. Phys. Lett. 100 192408

    [79]

    Bauer U, Emori S, Beach G S 2012 Appl. Phys. Lett. 101 172403

  • [1] Xue Wen-Ming, Li Jin, He Chao-Yu, Ouyang Tao, Luo Chao-Bo, Tang Chao, Zhong Jian-Xin. Giant and tunable Rashba spin splitting and quantum spin Hall effect in H-Pb-Cl. Acta Physica Sinica, 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [2] Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque. Acta Physica Sinica, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [3] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [4] Wang Zhi-Mei, Wang Hong, Xue Nai-Tao, Cheng Gao-Yan. Quantum coherence in spin-orbit coupled quantum dots system. Acta Physica Sinica, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [5] Jin Dong-Yue, Cao Lu-Ming, Wang You, Jia Xiao-Xue, Pan Yong-An, Zhou Yu-Xin, Lei Xin, Liu Yuan-Yuan, Yang Ying-Qi, Zhang Wan-Rong. Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application. Acta Physica Sinica, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [6] Zhang Ai-Xia, Jiang Yan-Fang, Xue Ju-Kui. Nonlinear energy band structure of spin-orbit coupled Bose-Einstein condensates in optical lattice. Acta Physica Sinica, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [7] Xue Hai-Bin, Duan Zhi-Lei, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through Su-Schrieffer-Heeger chain with spin-orbit coupling. Acta Physica Sinica, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [8] Shi Ting-Ting, Wang Liu-Jiu, Wang Jing-Kun, Zhang Wei. Some recent progresses on the study of ultracold quantum gases with spin-orbit coupling. Acta Physica Sinica, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [9] Liang Tao, Li Ming. Integer quantum Hall effect in a spin-orbital coupling system. Acta Physica Sinica, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [10] Li Zhi-Qiang, Wang Yue-Ming. One-dimensional spin-orbit coupling Bose gases with harmonic trapping. Acta Physica Sinica, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [11] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [12] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [13] Liu Sheng-Li, Li Jian-Zheng, Cheng Jie, Wang Hai-Yun, Li Yong-Tao, Zhang Hong-Guang, Li Xing-Ao. Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4. Acta Physica Sinica, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [14] Chen Dong-Hai, Yang Mou, Duan Hou-Jian, Wang Rui-Qiang. Electronic transport properties of graphene pn junctions with spin-orbit coupling. Acta Physica Sinica, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [15] Chen Guang-Ping. Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential. Acta Physica Sinica, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [16] Gong Shi-Jing, Duan Chun-Gang. Recent progress in Rashba spin orbit coupling on metal surface. Acta Physica Sinica, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [17] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [18] Zhang Lei, Li Hui-Wu, Hu Liang-Bin. Study of stability of persistent spin helix in two-dimensional electron gases with spin-orbit coupling. Acta Physica Sinica, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [19] Dong Quan-Li, Zhang Jie, Yang Jie, Jiang Zhao-Tan. Electronic energy band structures of carbon nanotubeswith spin-orbit coupling interaction. Acta Physica Sinica, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [20] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
Metrics
  • Abstract views:  10376
  • PDF Downloads:  1293
  • Cited By: 0
Publishing process
  • Received Date:  11 October 2016
  • Accepted Date:  28 November 2016
  • Published Online:  20 January 2017

/

返回文章
返回
Baidu
map