Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on the density characteristics of a supersonic turbulent boundary layer

He Lin Yi Shi-He Lu Xiao-Ge

Citation:

Experimental study on the density characteristics of a supersonic turbulent boundary layer

He Lin, Yi Shi-He, Lu Xiao-Ge
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • An experimental study on the density characteristics of a zero-pressure-gradient flat plate turbulent boundary layer at Ma=3.0 is performed by the density field measurement method based on Nano-tracer planar laser scattering (NPLS) technology. The mean and the fluctuating characteristics of the density field of the boundary layer are analyzed. And the spectrum analyses of density fluctuations are performed by utilizing Taylor's hypothesis to convert spatial measurements into pseudo-temporal measurements. The mean density profile increases away from the wall, which accords well with the density profile deduced from the mean velocity distribution by using the adiabatic Crocco-Busemann relation. The root mean square (RMS) of the density fluctuations increases in the logarithmic region with a peak value of 0.2ρ∞, and its probability density distribution follows a normal distribution. However, the RMS of density fluctuations decreases in the outer region of the boundary layer. According to the spectrum analysis, the density fluctuations are characterized in a wide range of frequencies throughout the boundary layer, with the maximum frequency on the order of 1 MHz. The low frequency fluctuations are predominant near the wall and in the outer region of the turbulent boundary layer. However, the proportion of high-frequency fluctuations is nearly equal to that of low-frequency fluctuations in the logarithmic region. The combined NPLS and PIV technique provide a simultaneous density and velocity measurements of the present turbulent boundary layer. The high frequency fluctuations in the supersonic turbulent boundary layer may be induced by the density fluctuations, which are caused by the convection of the turbulent structures with nonuniform density distributions. And the contribution of the velocity fluctuations only to the low frequency fluctuations is observed. There are good similarities between the density fluctuations and the mass flux fluctuations for both the probability density distribution and the spectrum characteristics. On the contrary, a large difference between the fluctuations of velocity and density is identified. Therefore, the strong density fluctuations inside supersonic turbulent boundary layers, as well as its difference between the velocity fluctuations, should be one of the most important differences between compressible and incompressible turbulent boundary layers.
      Corresponding author: He Lin, helin@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11302256).
    [1]

    Spina E F, Smits A J, Robinson S K 1994 Annu. Rev. Mech. 26 287

    [2]

    Morkovin M V 1962 Int. Symp. on The Mechanics of Turbulence 367

    [3]

    Smits A J, Dussauge J P 2006 Turbulent Shear Layers in Supersonic Flow (2nd Ed.) (New York:Springer) pp179-216

    [4]

    Smits A J, Spina E F, Alving A E, Smith R W, Fernando E M, Donovan J F 1989 Phys. Fluids A 1 865

    [5]

    Settles G S 2001 Schlieren & Shadowgraph Techniques (New York:Springer) pp263-278

    [6]

    Tropea C, Yarin A, Foss J 2007 Handbook of Experimental Fluid Mechanics (New York:Springer) pp480-484

    [7]

    Venkatakrishnan L 2004 AIAA 2004-2603

    [8]

    Venkatakrishnan L, Meier G E A 2004 Exp. Fluids 37 237

    [9]

    Danehy P M, O'Byrne S 1999 AIAA 1999-0772

    [10]

    Martin J E, Garcia M H 2009 Exp. Fluids 46 265

    [11]

    Mielke A F, Seasholtz R G, Elam K A, Panda J 2005 Exp. Fluids 39 441

    [12]

    Mielke A F, Elam K A 2009 Exp. Fluids 47 673

    [13]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. China, Ser. G 52 1357

    [14]

    He L 2006 M. S. Dissertation(Changsha:National University of Defense Technology) (in Chinese)[何霖2006硕士学位论文(长沙:国防科学技术大学)]

    [15]

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2013 Acta Phys. Sin. 62 084703 (in Chinese)[全鹏程, 易仕和, 武宇, 朱杨柱, 陈植2013 62 084703]

    [16]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese)[武宇, 易仕和, 陈植, 张庆虎, 冈敦殿2013 62 184702]

    [17]

    Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701 (in Chinese)[朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰2014 63 134701]

    [18]

    Liu X L 2015 M. S. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[刘小林2015硕士学位论文(长沙:国防科学技术大学)]

    [19]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Chin. Sci. Bull. 55 2004

    [20]

    Chen Z, Yi S, He L, Zhu Y, Ge Y, Wu Y 2014 J. Visualization 17 345

    [21]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704

    [22]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Sci. China:Ser. G 54 1702

    [23]

    He L, Yi S H, Zhao Y X,Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489

    [24]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China:Tech. Sci. 53 584

    [25]

    Nau T 1995 M. S. Dissertation(Princeton:Princeton University)

  • [1]

    Spina E F, Smits A J, Robinson S K 1994 Annu. Rev. Mech. 26 287

    [2]

    Morkovin M V 1962 Int. Symp. on The Mechanics of Turbulence 367

    [3]

    Smits A J, Dussauge J P 2006 Turbulent Shear Layers in Supersonic Flow (2nd Ed.) (New York:Springer) pp179-216

    [4]

    Smits A J, Spina E F, Alving A E, Smith R W, Fernando E M, Donovan J F 1989 Phys. Fluids A 1 865

    [5]

    Settles G S 2001 Schlieren & Shadowgraph Techniques (New York:Springer) pp263-278

    [6]

    Tropea C, Yarin A, Foss J 2007 Handbook of Experimental Fluid Mechanics (New York:Springer) pp480-484

    [7]

    Venkatakrishnan L 2004 AIAA 2004-2603

    [8]

    Venkatakrishnan L, Meier G E A 2004 Exp. Fluids 37 237

    [9]

    Danehy P M, O'Byrne S 1999 AIAA 1999-0772

    [10]

    Martin J E, Garcia M H 2009 Exp. Fluids 46 265

    [11]

    Mielke A F, Seasholtz R G, Elam K A, Panda J 2005 Exp. Fluids 39 441

    [12]

    Mielke A F, Elam K A 2009 Exp. Fluids 47 673

    [13]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. China, Ser. G 52 1357

    [14]

    He L 2006 M. S. Dissertation(Changsha:National University of Defense Technology) (in Chinese)[何霖2006硕士学位论文(长沙:国防科学技术大学)]

    [15]

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2013 Acta Phys. Sin. 62 084703 (in Chinese)[全鹏程, 易仕和, 武宇, 朱杨柱, 陈植2013 62 084703]

    [16]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese)[武宇, 易仕和, 陈植, 张庆虎, 冈敦殿2013 62 184702]

    [17]

    Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701 (in Chinese)[朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰2014 63 134701]

    [18]

    Liu X L 2015 M. S. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[刘小林2015硕士学位论文(长沙:国防科学技术大学)]

    [19]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Chin. Sci. Bull. 55 2004

    [20]

    Chen Z, Yi S, He L, Zhu Y, Ge Y, Wu Y 2014 J. Visualization 17 345

    [21]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704

    [22]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Sci. China:Ser. G 54 1702

    [23]

    He L, Yi S H, Zhao Y X,Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489

    [24]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China:Tech. Sci. 53 584

    [25]

    Nau T 1995 M. S. Dissertation(Princeton:Princeton University)

  • [1] Zeng Rui-Tong, Yi Shi-He, Lu Xiao-Ge, Zhao Yu-Xin, Zhang Bo, Gang Dun-Dian. Experimental study on boundary layer of internal flow visible supersonic nozzle. Acta Physica Sinica, 2024, 73(16): 164702. doi: 10.7498/aps.73.20240713
    [2] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [3] Zhao Tian-Ze, Yang Su-Hui, Li Kun, Gao Yan-Ze, Wang Xin, Zhang Jin-Ying, Li Zhuo, Zhao Yi-Ming, Liu Yu-Zhe. Accurate measurement of optical fiber time delay based on frequency domain reflectometry. Acta Physica Sinica, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [4] Guo Guang-Ming, Zhu Lin, Xing Bo-Yang. Density distribution characteristics of fluid inside vortex in supersonic mixing layer. Acta Physica Sinica, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [5] Tang Bing-Liang, Guo Shan-Guang, Song Guo-Zheng, Luo Yan-Hao. Experimental study on supersonic plate boundary layer transition under pulsed arc plasma excitation control. Acta Physica Sinica, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [6] Zhang Bo, He Lin, Yi Shi-He. Wavelet analysis of density fluctuation in supersonic turbulent boundary layer. Acta Physica Sinica, 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [7] Liu Xiao-Lin, Yi Shi-He, Niu Hai-Bo, Lu Xiao-Ge. Influence of laser-generated perturbations on hypersonic boundary-layer stability. Acta Physica Sinica, 2018, 67(21): 214701. doi: 10.7498/aps.67.20181192
    [8] Liu Xiao-Lin, Yi Shi-He, Niu Hai-Bo, Lu Xiao-Ge, Zhao Xin-Hai. Experimental investigation of the hypersonic boundary layer transition on a 7° straight cone. Acta Physica Sinica, 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [9] Pan Hao, Qu Xing-Hua, Shi Chun-Zhao, Li Ya-Ting, Zhang Fu-Min. Precision evaluation method of measuring frequency modulated continuous wave laser distance. Acta Physica Sinica, 2018, 67(9): 090201. doi: 10.7498/aps.67.20180142
    [10] Xu Hao, Wang Cong, Lu Hong-Zhi, Huang Wen-Hu. Experimental study on submerged supersonic gaseous jet induced tail cavity. Acta Physica Sinica, 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [11] Ding Hao-Lin, Yi Shi-He, Zhu Yang-Zhu, Zhao Xin-Hai, He Lin. Experimental investigation on aero-optics of supersonic turbulent boundary layers at different light incident angles. Acta Physica Sinica, 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [12] Gang Dun-Dian, Yi Shi-He, Zhao Yun-Fei. Experimental and numerical studies of supersonic flow over circular protuberances on a flat plate. Acta Physica Sinica, 2015, 64(5): 054705. doi: 10.7498/aps.64.054705
    [13] Zhu Yang-Zhu, Yi Shi-He, Kong Xiao-Ping, He Lin. Fine structures and characteristics on supersonic flow over backward facing step with tangential injection. Acta Physica Sinica, 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [14] Yin Ji-Fu, You Yun-Xiang, Li Wei, Hu Tian-Qun. Numerical analysis for the characteristics of flow control around a circular cylinder with a turbulent boundary layer separation using the electromagnetic force. Acta Physica Sinica, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [15] Zhu Yang-Zhu, Yi Shi-He, Kong Xiao-Ping, Quan Peng-Cheng, Chen Zhi, Tian Li-Feng. Fine structures and the unsteadiness characteristics of supersonic flow over backward facing step via NPLS. Acta Physica Sinica, 2014, 63(13): 134701. doi: 10.7498/aps.63.134701
    [16] Zhu Yang-Zhu, Yi Shi-He, Chen Zhi, Ge Yong, Wang Xiao-Hu, Fu Jia. Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection. Acta Physica Sinica, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [17] Deng Yu-Qiang, Lang Li-Ying, Xing Qi-Rong, Cao Shi-Ying, Yu Jing, Xu Tao, Li Jian, Xiong Li-Min, Wang Qing-Yue, Zhang Zhi-Gang. Terahertz time-frequency analysis with Gabor wavelet-transform. Acta Physica Sinica, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [18] Wang Fan-Zhen, Qi Guo-Yuan, Chen Zeng-Qiang, Yuan Zhu-Zhi. On a four-winged chaotic attractor. Acta Physica Sinica, 2007, 56(6): 3137-3144. doi: 10.7498/aps.56.3137
    [19] Deng Yu-Qiang, Xing Qi-Rong, Lang Li-Ying, Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang. Wavelet-transform in terahertz time-domain spectroscopy. Acta Physica Sinica, 2005, 54(11): 5224-5227. doi: 10.7498/aps.54.5224
    [20] Lian Qi-Xiang, Guo Hui. The sweep down flow and “contra-hairpin vortex” in a turbulent boundary layer. Acta Physica Sinica, 2004, 53(7): 2226-2232. doi: 10.7498/aps.53.2226
Metrics
  • Abstract views:  7013
  • PDF Downloads:  254
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2016
  • Accepted Date:  17 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回
Baidu
map