-
The electronic structures and the absorption spectra of the indium and manganese codoped LiNbO3 crystals and their comparative groups are investigated by first-principles based on the density functional theory. The supercell crystal structures are established with 60 atoms, including four models:the near-stoichiometric pure LiNbO3 crystal (LN), the manganese doped LiNbO3 crystal (Mn:LN, charge compensation model as MnLi+-VLi+), the indium and manganese codoped LiNbO3 crystal (In:Mn:LN, charge compensation model as InLi2+-MnLi+-3VLi+), and the other indium and manganese codoped LiNbO3 crystal (In(E):Mn:LN, charge compensation model as InLi2+-InNb2--MnLi+-VLi+). The results show that the extrinsic defect levels within the forbidden band of Mn:LN crystal are mainly contributed by Mn 3d orbital electrons, which also affect the top of the valence band. The band gap of Mn:LN about 3.18 eV is narrower than that of LN; the band gaps of In:Mn:LN and In(E):Mn:LN sample are 2.82 and 2.93 eV respectively. The electron density of state (DOS) of manganese codoped LiNbO3 crystal shows that the orbits of Mn 3d, Nb 4d and O 2p superpose each other, i.e., forming covalent bonds, which result in conduction and valence bands shifting toward low energy. The indium ion does not contribute the extrinsic energy level within forbidden band, it affects the band gap through changing O2- electron cloud shape. The band gap narrows down if the indium ions occupy lithium ion positions, and becomes broad if the indium ions occupy niobium ion positions. It is found that the Mn:LN, In:Mn:LN and In(E):Mn:LN samples display the absorption peaks at 3.25, 3.11, 2.97, 2.85, 2.13 and 1.66 eV. The last absorption peak is contributed by the electron transferring from the Mn2+ energy level to conduction band, and the doping of indium ions leads to attenuation of this peak. The peak at 2.13 eV relates to the Mn3+, it is enhanced by the doped indium ions. The indium ions in crystal would influence the absorption, which relates to manganese ions, by transforming manganese ion valence via the formula as m Mn2++In3+→Mn3++In2+, that is, with the doping of the indium ions, the photorefractive center Mn2+ concentration decreases, which is responsible for the absorption peak at 1.66 eV. It must be mentioned that the Mn2+ possesses not only the shallow levels as mentioned previously, but also the deep ones which are responsible for the absorptions at 2.85 eV and other high energies. For the indium and manganese codoped LiNbO3 crystals, if the recording light is chosen at near 1.66 eV (748 nm), the relatively low concentration of indium ions is proposed to be chosen to achieve the high recording sensitivity.
-
Keywords:
- In:Mn:LiNbO3 crystal /
- electronic structure /
- absorption spectrum /
- first-principles
[1] Ballman A A 2006 J. Am. Ceram. Soc. 48 112
[2] Buse K, Adibi A, Psaltis D 1998 Nature 393 665
[3] Li M H, Zhao Y Q, Xu K B 1995 Chin. Sci. Bull. 41 655
[4] Kong Y F, Xu J J, Zhang G Y 2005 Multifunctional Photovoltaic Material–Lithium Niobate Crystal (Beijing:Science Press) p263(in Chinese)[孔勇发, 许京军, 张光寅2005多功能光电材料––铌酸锂晶体(北京:科学出版社)第263页]
[5] Liu D, Liu L, Liu Y, Zhou C, Xu L 2000 Appl. Phys. Lett. 77 2964
[6] Yang Y P, Buse K, Psaltis D 2002 Opt. Lett. 27 158
[7] Fu B, Zhang G Q, Liu X M, Shen Y, Xu Q J, Kong Y F 2008 Acta Phys. Sin. 57 2946 (in Chinese)[付博, 张国权, 刘祥明, 申岩, 徐庆君, 孔勇发2008 57 2946]
[8] Zhen X, Li Q, Xu Y 2005 Appl. Opt. 44 4569
[9] Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013
[10] Segall M D, Lindan P J D, Probert M J, Pickard J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
[11] Vanderbilt D 1990 Phys. Rev. B 41 7892
[12] Tian F H, Liu C B 2006 J. Phys. Chem. B 110 17866
[13] Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210 (in Chinese)[赵佰强, 张耘, 邱晓燕, 王学维2015 64 124210]
[14] Wang W, Wang R, Zhang W, Xing L L, Xu Y L, Wu X H 2013 Phys. Chem. Chem. Phys. 15 14347
[15] Zeng F, Sheng P, Tang S G, Pan F, Yan S W, Hu C F, Zou Y, Huang Y Y, Jiang Z, Guo D 2012 Mater. Chem. Phys. 136 783
[16] Corradi G, Sothe H, Spaeth J M, Polgar K 1998 J. Phys. Condens. Matter 2 543
[17] Kong Y F, Wen J, Wang H N 1995 Appl. Phys. Lett. 66 280
[18] Lerner P, Legras C, Dumas J P 1968 J. Cryst. Growth 3 231
[19] Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401
[20] White R T, Mckinnie I T, Butterworth S D, Baxter G W, Warrington D M, Smith P G R 2003 Appl. Phys. B 77 547
[21] Mamoun S, Merad A E, Guilbert L 2013 J. Comput. Mater. Sci. 79 125
[22] Shen X C 2002 Spectra and Optical Properties of Semiconductors (Vol. 2)(Beijing:Science Press) p76(in Chinese)[沈学础2002半导体光谱和光学性质(第二版) (北京:科学出版社)第76页]
[23] Liu Y, Kitamura K, Takekawa S 2002 Appl. Phys. Lett. 81 2686
[24] Bae S I, Ichikawa J, Shimamura K, Onodera H, Fukuda T 1997 J. Cryst. Growth 180 94
[25] Yang Y P, Psaltis D, Luennemann M, Berben D, Hartwig U, Buse K 2003 J. Opt. Soc. Am. B 20 149
[26] Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkar R R 1998 Science 282 1089
[27] Lei X W, Lin Z, Zhao H 2011 J. Atomic and Molecular Phys. 28 944 (in Chinese)[雷晓蔚, 林竹, 赵辉2011原子与分子 28 944]
[28] Liu D, Liu L, Zhou C, Zhang J, Xu L 2002 Microwave Opt. Technol. Lett. 32 423
[29] Zhang G, Tomita Y, Zhang X, Sunarno S 2002 Appl. Phys. Lett. 81 1393
-
[1] Ballman A A 2006 J. Am. Ceram. Soc. 48 112
[2] Buse K, Adibi A, Psaltis D 1998 Nature 393 665
[3] Li M H, Zhao Y Q, Xu K B 1995 Chin. Sci. Bull. 41 655
[4] Kong Y F, Xu J J, Zhang G Y 2005 Multifunctional Photovoltaic Material–Lithium Niobate Crystal (Beijing:Science Press) p263(in Chinese)[孔勇发, 许京军, 张光寅2005多功能光电材料––铌酸锂晶体(北京:科学出版社)第263页]
[5] Liu D, Liu L, Liu Y, Zhou C, Xu L 2000 Appl. Phys. Lett. 77 2964
[6] Yang Y P, Buse K, Psaltis D 2002 Opt. Lett. 27 158
[7] Fu B, Zhang G Q, Liu X M, Shen Y, Xu Q J, Kong Y F 2008 Acta Phys. Sin. 57 2946 (in Chinese)[付博, 张国权, 刘祥明, 申岩, 徐庆君, 孔勇发2008 57 2946]
[8] Zhen X, Li Q, Xu Y 2005 Appl. Opt. 44 4569
[9] Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013
[10] Segall M D, Lindan P J D, Probert M J, Pickard J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
[11] Vanderbilt D 1990 Phys. Rev. B 41 7892
[12] Tian F H, Liu C B 2006 J. Phys. Chem. B 110 17866
[13] Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210 (in Chinese)[赵佰强, 张耘, 邱晓燕, 王学维2015 64 124210]
[14] Wang W, Wang R, Zhang W, Xing L L, Xu Y L, Wu X H 2013 Phys. Chem. Chem. Phys. 15 14347
[15] Zeng F, Sheng P, Tang S G, Pan F, Yan S W, Hu C F, Zou Y, Huang Y Y, Jiang Z, Guo D 2012 Mater. Chem. Phys. 136 783
[16] Corradi G, Sothe H, Spaeth J M, Polgar K 1998 J. Phys. Condens. Matter 2 543
[17] Kong Y F, Wen J, Wang H N 1995 Appl. Phys. Lett. 66 280
[18] Lerner P, Legras C, Dumas J P 1968 J. Cryst. Growth 3 231
[19] Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401
[20] White R T, Mckinnie I T, Butterworth S D, Baxter G W, Warrington D M, Smith P G R 2003 Appl. Phys. B 77 547
[21] Mamoun S, Merad A E, Guilbert L 2013 J. Comput. Mater. Sci. 79 125
[22] Shen X C 2002 Spectra and Optical Properties of Semiconductors (Vol. 2)(Beijing:Science Press) p76(in Chinese)[沈学础2002半导体光谱和光学性质(第二版) (北京:科学出版社)第76页]
[23] Liu Y, Kitamura K, Takekawa S 2002 Appl. Phys. Lett. 81 2686
[24] Bae S I, Ichikawa J, Shimamura K, Onodera H, Fukuda T 1997 J. Cryst. Growth 180 94
[25] Yang Y P, Psaltis D, Luennemann M, Berben D, Hartwig U, Buse K 2003 J. Opt. Soc. Am. B 20 149
[26] Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkar R R 1998 Science 282 1089
[27] Lei X W, Lin Z, Zhao H 2011 J. Atomic and Molecular Phys. 28 944 (in Chinese)[雷晓蔚, 林竹, 赵辉2011原子与分子 28 944]
[28] Liu D, Liu L, Zhou C, Zhang J, Xu L 2002 Microwave Opt. Technol. Lett. 32 423
[29] Zhang G, Tomita Y, Zhang X, Sunarno S 2002 Appl. Phys. Lett. 81 1393
Catalog
Metrics
- Abstract views: 7090
- PDF Downloads: 295
- Cited By: 0