Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on increasing signal-to-noise ratio of a beat note by cascading an Yb-doped fiber in an Er-fiber comb

Liu Huan Cao Shi-Ying Yu Yang Lin Bai-Ke Fang Zhan-Jun

Citation:

Experimental study on increasing signal-to-noise ratio of a beat note by cascading an Yb-doped fiber in an Er-fiber comb

Liu Huan, Cao Shi-Ying, Yu Yang, Lin Bai-Ke, Fang Zhan-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The harmonic optical frequency chain is the only tool for measuring optical frequency till the advent of a femtosecond optical frequency comb (FOFC). However, its disadvantages are obvious, such as high cost, difficult construction, complex usage, and complicated maintenance. The emergence of femtosecond optical frequency combs (FOFCs) makes it possible to measure the absolute frequency of a laser, which greatly simplifies the quantity traceability of the absolute frequency value and comparison, and allows the length unit “m” to be directly traced back to the time unit “s”. The beat note (fb) between an FOFC and a test laser is one of the most important data in measuring absolute frequency of the test laser. In order to ensure the accuracy and reliability of the measurement, the signal-to-noise ratio (SNR) of fb should be above 30 dB at 300 kHz resolution bandwidth. Among the wavelength standards recommended to replicate “meter” (SI), iodine-stabilized 633 nm lasers and iodine-stabilized 532 nm lasers have been widely used. Compared with iodine-stabilized 633 nm lasers, iodine-stabilized 532 nm lasers have the advantages of high stability, high output power, no modulation and fiber coupled output. Therefore, it is of great importance to measure and monitor the absolute frequency of an iodine-stabilized 532 nm laser. Aiming at the specific requirements for absolute frequency measurement of an iodine-stabilized 532 nm laser, the absolute frequency measurement of its fundamental 1064 nm laser has been studied. In this paper, a high-repetition-rate Er-doped femtosecond fiber laser is adopted as an optical source in the system. The repetition rate of the fiber laser is 303 MHz, the output power in the continuous-wave state is 130 mW and the average output power in the mode-locking state is 80 mW. The highest SNR of fb between the comb light and a 1064 nm laser generated by an iodine-stabilized 532 nm laser is only 30 dB due to the low intensity at 1 μm wavelength in the supercontinuum, which just reaches the SNR threshold meeting the counter's working condition. In order to improve the accuracy and reliability of absolute frequency measurement, the technique of cascading an Yb-doped fiber amplifier after spectral broadening is adopted to enhance the spectral intensity at 1 μm wavelength. The experimental results indicate that the SNR of fb between a 1 μm laser after spectral enhancement and a 1064 nm laser is increased by 5 dB and kept at 35 dB for several days, meeting requirements for long-term continuous monitoring. This method can effectively reduce the intensity requirements at 1 μm wavelength when the spectrum is directly broadened in the Er-FOFC.
      Corresponding author: Cao Shi-Ying, caoshiying@nim.ac.cn
    • Funds: Project supported by Tsinghua University Initiative Scientific Research Program, China (Grant No. 20131089299) and the Special Scientific Research Foundation of General Administration of Quality Supervision, Inspection and Quarantine of China (Grant No. 201310007).
    [1]

    Ma L S, Zucco M, Picard S, Robertsson L, Windeler R S 2003 IEEE J. Sel. Top. Quantum. Electron. 9 1066

    [2]

    Ma L S, Robertsson L, Picard S, Chartier J M, Karlsson H, Prieto E, Windeler R S 2003 IEEE. Trans. Instrum. Meas. 52 232

    [3]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Coq Y L, Kersalé Y, Santarelli G 2009 Opt. Lett. 34 3707

    [4]

    Peng J L, Ahn H, Shu R H, Chui H C, Nicholson J W 2007 Appl. Phys. B 86 49

    [5]

    Klose A, Ycas G, Maser D L, Diddams S A 2014 Opt. Express 22 28400

    [6]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jørgensen C G 2004 Opt. Lett. 29 250

    [7]

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204 (in Chinese)[刘欢,曹士英,孟飞,林百科,方占军2015 64 094204]

    [8]

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Laser Phys. 25 075105

    [9]

    Lea S N, Rowley W R C, Margolis H S, Barwood G P, Huang G, Gill P, Chartier J M, Windeler R S 2003 Metrologia 40 84

    [10]

    Eickhoff M L, Hall J L 1995 IEEE Trans. Instrum. Meas. 44 155

    [11]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hänsch T W 2000 Phys. Rev. Lett. 84 5102

    [12]

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y G, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chinese J. Lasers 41 0902002 (in Chinese)[林百科,曹士英,赵阳,李烨,王强,林弋戈,曹建平,臧二军,方占军,李天初2014中国激光41 0902002]

    [13]

    Kharenko D S, Podivilov E V, Apolonski A A, Babin S A 2012 Opt. Lett. 37 4104

    [14]

    Li C, Ma Y X, Gao X, Niu F Z, Jiang T X, Wang A M, Zhang Z G 2015 Appl. Opt. 54 8350

    [15]

    Chen W, Song Y, Jung K, Hu M L, Wang C Y, Kim J 2016 Opt. Express 24 1347

    [16]

    Xie C, Liu B W, Niu H L, Song Y J, Li Y, Hu M L, Zhang Y G, Shen W D, Liu X, Wang C Y 2011 Opt. Lett. 36 4149

    [17]

    Wang S J, Liu B W, Gu C L, Song Y J, Qian C, Hu M L, Chai L, Wang C Y 2013 Opt. Lett. 38 296

    [18]

    Ycas G, Osterman S, Diddams S A 2012 Opt. Lett. 37 2199

    [19]

    Kieu K, Jones R J, Peyghambarian N 2010 Opt. Express 18 21350

    [20]

    Kim Y, Kim Y J, Kim S, Kim S W 2009 Opt. Express 17 18606

    [21]

    Alder F, Diddams S A 2012 Opt. Lett. 37 1400

    [22]

    Klose A, Ycas G, Cruze F C, Maser D L, Diddams S A 2016 Appl. Phys. B 122 77

    [23]

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210 (in Chinese)[刘欢, 巩马理, 曹士英, 林百科, 方占军2015 64 114210]

  • [1]

    Ma L S, Zucco M, Picard S, Robertsson L, Windeler R S 2003 IEEE J. Sel. Top. Quantum. Electron. 9 1066

    [2]

    Ma L S, Robertsson L, Picard S, Chartier J M, Karlsson H, Prieto E, Windeler R S 2003 IEEE. Trans. Instrum. Meas. 52 232

    [3]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Coq Y L, Kersalé Y, Santarelli G 2009 Opt. Lett. 34 3707

    [4]

    Peng J L, Ahn H, Shu R H, Chui H C, Nicholson J W 2007 Appl. Phys. B 86 49

    [5]

    Klose A, Ycas G, Maser D L, Diddams S A 2014 Opt. Express 22 28400

    [6]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jørgensen C G 2004 Opt. Lett. 29 250

    [7]

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204 (in Chinese)[刘欢,曹士英,孟飞,林百科,方占军2015 64 094204]

    [8]

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Laser Phys. 25 075105

    [9]

    Lea S N, Rowley W R C, Margolis H S, Barwood G P, Huang G, Gill P, Chartier J M, Windeler R S 2003 Metrologia 40 84

    [10]

    Eickhoff M L, Hall J L 1995 IEEE Trans. Instrum. Meas. 44 155

    [11]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hänsch T W 2000 Phys. Rev. Lett. 84 5102

    [12]

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y G, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chinese J. Lasers 41 0902002 (in Chinese)[林百科,曹士英,赵阳,李烨,王强,林弋戈,曹建平,臧二军,方占军,李天初2014中国激光41 0902002]

    [13]

    Kharenko D S, Podivilov E V, Apolonski A A, Babin S A 2012 Opt. Lett. 37 4104

    [14]

    Li C, Ma Y X, Gao X, Niu F Z, Jiang T X, Wang A M, Zhang Z G 2015 Appl. Opt. 54 8350

    [15]

    Chen W, Song Y, Jung K, Hu M L, Wang C Y, Kim J 2016 Opt. Express 24 1347

    [16]

    Xie C, Liu B W, Niu H L, Song Y J, Li Y, Hu M L, Zhang Y G, Shen W D, Liu X, Wang C Y 2011 Opt. Lett. 36 4149

    [17]

    Wang S J, Liu B W, Gu C L, Song Y J, Qian C, Hu M L, Chai L, Wang C Y 2013 Opt. Lett. 38 296

    [18]

    Ycas G, Osterman S, Diddams S A 2012 Opt. Lett. 37 2199

    [19]

    Kieu K, Jones R J, Peyghambarian N 2010 Opt. Express 18 21350

    [20]

    Kim Y, Kim Y J, Kim S, Kim S W 2009 Opt. Express 17 18606

    [21]

    Alder F, Diddams S A 2012 Opt. Lett. 37 1400

    [22]

    Klose A, Ycas G, Cruze F C, Maser D L, Diddams S A 2016 Appl. Phys. B 122 77

    [23]

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210 (in Chinese)[刘欢, 巩马理, 曹士英, 林百科, 方占军2015 64 114210]

  • [1] Zhao Han-Yu, Cao Shi-Ying, Dai Shao-Yang, Yang Tao, Zuo Ya-Ni, Hu Ming-Lie. Realization of frequency calibration for 532 nm wavelength laser based on spectral enhancement technology. Acta Physica Sinica, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [2] Rao Bing-Jie, Zhang Pan, Li Ming-Kun, Yang Xi-Guang, Yan Lu-Lu, Chen Xin, Zhang Shou-Gang, Zhang Yan-Yan, Jiang Hai-Feng. Multi-branch erbium fiber-based femtosecond optical frequency comb for measurement of cavity ring-down spectroscopy. Acta Physica Sinica, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [3] Cao Shi-Ying, Lin Bai-Ke, Yuan Xiao-Di, Ding Yong-Jin, Meng Fei, Fang Zhan-Jun. Influence of electro-optic modulator on Er-doped fiber femtosecond laser. Acta Physica Sinica, 2021, 70(7): 074203. doi: 10.7498/aps.70.20201564
    [4] Tao Meng-Meng, Tao Bo, Ye Jing-Feng, Shen Yan-Long, Huang Ke, Ye Xi-Sheng, Zhao Jun. Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application. Acta Physica Sinica, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [5] Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Review on surface plasmonic coupling systems and their applications in spectra enhancement. Acta Physica Sinica, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [6] Zheng Pei-Chao, Li Xiao-Juan, Wang Jin-Mei, Zheng Shuang, Zhao Huai-Dong. Quantitative analysis of Cu and Pb in Coptidis by reheated double pulse laser induced breakdown spectroscopy. Acta Physica Sinica, 2019, 68(12): 125202. doi: 10.7498/aps.68.20190148
    [7] Jia Meng-Yuan, Zhao Gang, Zhou Yue-Ting, Liu Jian-Xin, Guo Song-Jie, Wu Yong-Qian, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique. Acta Physica Sinica, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [8] Cheng Jian,  Feng Jin-Xia,  Li Yuan-Ji,  Zhang Kuan-Shou. Measurement of low-frequency signal based on quantum-enhanced fiber Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(24): 244202. doi: 10.7498/aps.67.20181335
    [9] Li Bai-Hui, Gao Xun, Song Chao, Lin Jing-Quan. Laser induced plasma spectral characteristics of Cu with magnetically and spatially combined confinement. Acta Physica Sinica, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [10] Liu Huan, Gong Ma-Li, Cao Shi-Ying, Lin Bai-Ke, Fang Zhan-Jun. A 303 MHz fundamental repetition rate femtosecond Er:fiber ring laser. Acta Physica Sinica, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [11] Liu Huan, Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun. Er-fiber femtosecond optical frequency comb covering visible light. Acta Physica Sinica, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [12] Li Cheng, Gao Xun, Liu Lu, Lin Jing-Quan. Evolution of laser-induced plasma spectrum intensity under magnetic field confinement. Acta Physica Sinica, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [13] Du Chuang, Gao Xun, Shao Yan, Song Xiao-Wei, Zhao Zhen-Ming, Hao Zuo-Qiang, Lin Jing-Quan. Analyses of heavy metals by soil using dual-pulsed laser induced breakdown spectroscopy. Acta Physica Sinica, 2013, 62(4): 045202. doi: 10.7498/aps.62.045202
    [14] Liu Hua-Gang, Huang Jian-Hong, Weng Wen, Li Jin-Hui, Zheng Hui, Dai Shu-Tao, Zhao Xian, Wang Ji-Yang, Lin Wen-Xiong. High power all-normal-dispersion mode-locked Yb3+-doped double-clad fiber femtosecond laser. Acta Physica Sinica, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [15] Cao Shi-Ying, Meng Fei, Fang Zhan-Jun, Li Tian-Chu. Experimental study on detection of the high signal-to-noise ratio of the carrier-envelope offset frequency in an Er-doped fiber femtosecond laser. Acta Physica Sinica, 2012, 61(6): 064208. doi: 10.7498/aps.61.064208
    [16] Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun, Li Tian-Chu. Precise frequency control of an Er-doped fiber comb. Acta Physica Sinica, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [17] Cao Shi-Ying, Fang Zhan-Jun, Meng Fei, Wang Qiang, Li Tian-Chu. Ti:sapphire femtosecond comb with two spectral broadening parts. Acta Physica Sinica, 2011, 60(8): 080601. doi: 10.7498/aps.60.080601
    [18] Meng Fei, Cao Shi-Ying, Cai Yue, Wang Gui-Zhong, Cao Jian-Ping, Li Tian-Chu, Fang Zhan-Jun. Study of the femtosecond fiber comb and absolute optical frequency measurement. Acta Physica Sinica, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [19] Li Tian-Chu, Cao Shi-Ying, Meng Fei, Cai Yue, Fang Zhan-Jun, Wang Gui-Zhong, Zhang Zhi-Gang. Detection of carrier-envelope offset frequency in an Er-doped fiber femtosecond laser. Acta Physica Sinica, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [20] Han Hai_Nian, Zhang Wei, Wang Peng, Li De_Hua, Wei Zhi_Yi, Shen Nai_Chen, Nie Yu_Xin, Gao Yu_Ping, Zhang Shou_Gang, Li Shi_Qun. Precise control of femtosecond Ti:sapphire laser frequency comb. Acta Physica Sinica, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
Metrics
  • Abstract views:  6353
  • PDF Downloads:  227
  • Cited By: 0
Publishing process
  • Received Date:  02 July 2016
  • Accepted Date:  31 August 2016
  • Published Online:  20 January 2017

/

返回文章
返回
Baidu
map