Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ocean surface wave effect on the spatial characteristics of ambient noise

Zhou Jian-Bo Piao Sheng-Chun Liu Ya-Qin Zhu Han-Hao

Citation:

Ocean surface wave effect on the spatial characteristics of ambient noise

Zhou Jian-Bo, Piao Sheng-Chun, Liu Ya-Qin, Zhu Han-Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The ocean ambient noise field experiences a stochastic process of many such noise sources and the respective interactions of their wave fields with the waveguide boundaries. At frequencies of about 1 kHz and higher, forward scattering from surface wave can strongly affect shallow water sound propagation. However, most of the available ambient forecasting models do not consider the effects of multiple forward scattering from surface wave. Therefore, there is a need for an accurate method of predicting ambient noises at middle and high-frequency which can account for surface scatterings. Aiming at such a requirement, a propagation model based on transport theory method is described which yields the second-order moment of the acoustic field. Monte Carlo simulations of acoustic propagation loss are employed to validate the transport theory method. The mode number dependence of mode coupling phenomenon is demonstrated at 1000 Hz via the competing effects of mode coupling and attenuation ranges. Low and middle propagating modes are seen to have a smaller coupling range than the attenuation range, allowing mode coupling effects to take precedence over attenuation effects. The mode energies and the coherences are also examined, and it is found that the mode coupling rate for surface wave is significant, but strongly dependent on mode number. Mode phase randomization by surface waves is found to be dominated by coupling effects. On the basis of transport theory propagation model, connecting with the properties of ambient noise sources, a spatial characteristic model for ambient noise under surface wave is presented. Further, the effects of surface wave on ambient noise intensity, vertical correlation and vertical directionality are analyzed. Simulation results show that the surface wave may result in energy transfer from medium modes to low modes and high modes, the rate of energy transfer depends on the mode energy difference. Since the medium mode plays an important role in noise intensity, the noise intensity decreases with the increase of surface wave. In addition to noise intensity, the vertical correlation of ambient noise also decreases due to mode phase randomization by surface wave. Besides, mode coupling can also lead to a change of vertical beam intensity distribution, positive high-angle beams associated with direct, surface, and bottom-surface-bounced rays become weaker, while negative high-angle beams associated with bottom bounced rays become stronger. Since the vertical directionality is sensitive to surface wave, the model can be applied to ocean surface parameter inversion. In summary, the model provided in this paper is closer to actual ocean waveguide and has future prospect in ocean acoustic engineering application.
      Corresponding author: Piao Sheng-Chun, piaoshengchun@hrbeu.edu.cn
    • Funds: Project supported by the Science and Technology Foundation of State Key Laboratory, China(Grant No. 9140C200103120C2001), the National Natural Science Foundation of China(Grant No. 11234002), and the Open Foundation from Fishery Sciences in the First-class Subjects of Zhejiang, China(Grant No. 20160004).
    [1]

    Guo X Y, Li F, Tie G P 2014 Physics 43 723 (in Chinese)[郭新毅, 李凡, 铁广鹏2014物理43 723]

    [2]

    Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938

    [3]

    Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377

    [4]

    Lin J H, Chang D Q, Ma L, Li X J, Jiang G J 2001 Acta Acust. 26 217 (in Chinese)[林建恒, 常道庆, 马力, 李学军, 蒋国建2001声学学报26 217]

    [5]

    Arnaud D, Eric L, Mickael T 2003 J. Acoust. Soc. Am. 113 2973

    [6]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732

    [7]

    Chapman D M 1989 J. Acoust. Soc. Am. 85 648

    [8]

    Kuperman W A, Ingenito F J 1980 J. Acoust. Soc. Am. 67 1988

    [9]

    Carey W M 1986 J. Acoust. Soc. Am. 80 1523

    [10]

    Perkins J S, Kuperman W A 1993 J. Acoust. Soc. Am. 93 739

    [11]

    Harrison C H J 1997 J. Acoust. Soc. Am. 102 2655

    [12]

    Yang T C, Kwang Y 1997 J. Acoust. Soc. Am. 101 2541

    [13]

    Buckingham M J, Deane G B, Carbone N M 1995 J. Comput. Acoust. 10 101

    [14]

    Aredov A A, Furduev A V 1994 J. Acoust. Phys. 40 176

    [15]

    Huang Y W, Yang S E, Piao S C 2009 J. Harbin Engineer. Univ. 1 1209 (in Chinese)[黄益旺, 杨士莪, 朴胜春2009哈尔滨工程大学学报1 1209]

    [16]

    Huang Y W, Yang S E 2010 J. Harbin Engineer. Univ. 2 137 (in Chinese)[黄益旺, 杨士莪2010哈尔滨工程大学学报2 137]

    [17]

    Tie G P, Guo X Y 2014 Tech. Acous. 33 209 (in Chinese)[铁广鹏, 郭新毅2014声学技术33 209]

    [18]

    Lin J H, Gao T F 2003 Tech. Acous. 22 119 (in Chinese)[林建恒, 高天赋2003声学技术22 119]

    [19]

    Sun J P, Yang J, Lin J H, Jiang G J, Yi X J, Jiang P F 2016 Acta Phys. Sin. 65 124301 (in Chinese)[孙军平, 杨军, 林建恒, 蒋国健, 衣雪娟, 江鹏飞2016 65 124301]

    [20]

    He L, Li Z L, Zhang R H, Peng Z H 2008 Chin. Phys. Lett. 25 582

    [21]

    Guy V N, Jorge C N 1994 J. Acoust. Soc. Am. 99 2013

    [22]

    Kuperman W A, Ingenito F 1977 J. Acoust. Soc. Am. 61 1178

    [23]

    Rouseff D, Ewart T E 1995 J. Acoust. Soc. Am. 98 3397

    [24]

    Thorsos E I, Elam F S, Hefner W T, Reynolds B T, Stephen A R, Yang J 2010 Second International Shallow-Water Conference ShangHai, China, September 16-20, 2009 p99

    [25]

    Thorsos E I, Henyey F S, Elam W T, Reynolds S A, Williams K L 2004 High Frequency Ocean Acoustics California, America, March 1-5, 2004 p132

    [26]

    Colosi J A, Morozov A K 2009 J. Acoust. Soc. Am. 126 1026

    [27]

    Kaustubha R, John A C 2015 J. Acoust. Soc. Am. 137 2950

    [28]

    Creamer D B 1996 J. Acoust. Soc. Am. 99 2825

    [29]

    Westwood E K, Tindle C T, Chapman N R 1996 J. Acoust. Soc. Am. 100 3631

  • [1]

    Guo X Y, Li F, Tie G P 2014 Physics 43 723 (in Chinese)[郭新毅, 李凡, 铁广鹏2014物理43 723]

    [2]

    Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938

    [3]

    Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377

    [4]

    Lin J H, Chang D Q, Ma L, Li X J, Jiang G J 2001 Acta Acust. 26 217 (in Chinese)[林建恒, 常道庆, 马力, 李学军, 蒋国建2001声学学报26 217]

    [5]

    Arnaud D, Eric L, Mickael T 2003 J. Acoust. Soc. Am. 113 2973

    [6]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732

    [7]

    Chapman D M 1989 J. Acoust. Soc. Am. 85 648

    [8]

    Kuperman W A, Ingenito F J 1980 J. Acoust. Soc. Am. 67 1988

    [9]

    Carey W M 1986 J. Acoust. Soc. Am. 80 1523

    [10]

    Perkins J S, Kuperman W A 1993 J. Acoust. Soc. Am. 93 739

    [11]

    Harrison C H J 1997 J. Acoust. Soc. Am. 102 2655

    [12]

    Yang T C, Kwang Y 1997 J. Acoust. Soc. Am. 101 2541

    [13]

    Buckingham M J, Deane G B, Carbone N M 1995 J. Comput. Acoust. 10 101

    [14]

    Aredov A A, Furduev A V 1994 J. Acoust. Phys. 40 176

    [15]

    Huang Y W, Yang S E, Piao S C 2009 J. Harbin Engineer. Univ. 1 1209 (in Chinese)[黄益旺, 杨士莪, 朴胜春2009哈尔滨工程大学学报1 1209]

    [16]

    Huang Y W, Yang S E 2010 J. Harbin Engineer. Univ. 2 137 (in Chinese)[黄益旺, 杨士莪2010哈尔滨工程大学学报2 137]

    [17]

    Tie G P, Guo X Y 2014 Tech. Acous. 33 209 (in Chinese)[铁广鹏, 郭新毅2014声学技术33 209]

    [18]

    Lin J H, Gao T F 2003 Tech. Acous. 22 119 (in Chinese)[林建恒, 高天赋2003声学技术22 119]

    [19]

    Sun J P, Yang J, Lin J H, Jiang G J, Yi X J, Jiang P F 2016 Acta Phys. Sin. 65 124301 (in Chinese)[孙军平, 杨军, 林建恒, 蒋国健, 衣雪娟, 江鹏飞2016 65 124301]

    [20]

    He L, Li Z L, Zhang R H, Peng Z H 2008 Chin. Phys. Lett. 25 582

    [21]

    Guy V N, Jorge C N 1994 J. Acoust. Soc. Am. 99 2013

    [22]

    Kuperman W A, Ingenito F 1977 J. Acoust. Soc. Am. 61 1178

    [23]

    Rouseff D, Ewart T E 1995 J. Acoust. Soc. Am. 98 3397

    [24]

    Thorsos E I, Elam F S, Hefner W T, Reynolds B T, Stephen A R, Yang J 2010 Second International Shallow-Water Conference ShangHai, China, September 16-20, 2009 p99

    [25]

    Thorsos E I, Henyey F S, Elam W T, Reynolds S A, Williams K L 2004 High Frequency Ocean Acoustics California, America, March 1-5, 2004 p132

    [26]

    Colosi J A, Morozov A K 2009 J. Acoust. Soc. Am. 126 1026

    [27]

    Kaustubha R, John A C 2015 J. Acoust. Soc. Am. 137 2950

    [28]

    Creamer D B 1996 J. Acoust. Soc. Am. 99 2825

    [29]

    Westwood E K, Tindle C T, Chapman N R 1996 J. Acoust. Soc. Am. 100 3631

  • [1] Deng Yu-Xin, Liu Xiong-Hou, Yang Yi-Xin. Analysis of line spectral fluctuation characteristics for source depth discrimination in shallow water. Acta Physica Sinica, 2024, 73(13): 134301. doi: 10.7498/aps.73.20231911
    [2] Liu Yun-Feng, Li Zheng-Lin, Qin Ji-Xing, Wu Shuang-Lin, Wang Meng-Yuan, Zhou Jiang-Tao. Effects of wind and rainfall on ambient noise in the East Indian Ocean. Acta Physica Sinica, 2022, 71(20): 204303. doi: 10.7498/aps.71.20220615
    [3] Ren Chao, Huang Yi-Wang, Xia Zhi. Modeling of spatial correlation characteristics of broadband ocean ambient noise vector field. Acta Physica Sinica, 2022, 71(2): 024301. doi: 10.7498/aps.71.20211518
    [4] Liu Dai, Li Zheng-Lin, Liu Ruo-Yun. Sound propagation in shallow water with periodic rough bottom. Acta Physica Sinica, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [5] Modeling of Spatial Correlation Characteristics of Broadband Ocean Ambient Noise Vector Field. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211518
    [6] Jiang Guang-Yu, Sun Chao, Li Qin-Ran. Effect of mesoscale eddies on the vertical spatial characteristics of wind-generated noise in deep ocean. Acta Physica Sinica, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [7] Jiang Guang-Yu, Sun Chao, Xie Lei, Liu Xiong-Hou. Influence of surface duct on the vertical spatial characteristics of wind-generated noise in deep ocean. Acta Physica Sinica, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [8] Li Guo-Chang, Li Sheng-Tao. Review of charge deposition characteristics and trap parameters of dielectric in space electron radiation environment. Acta Physica Sinica, 2019, 68(23): 239401. doi: 10.7498/aps.68.20191252
    [9] Li He, Guo Xin-Yi, Ma Li. Estimating structure and geoacoustic parameters of sub-bottom by using spatial characteristics of ocean ambient noise in shallow water. Acta Physica Sinica, 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [10] Jiang Peng-Fei, Lin Jian-Heng, Sun Jun-Ping, Yi Xue-Juan. Ocean ambient noise model considering depth distribution of source and geo-acoustic inversion. Acta Physica Sinica, 2017, 66(1): 014306. doi: 10.7498/aps.66.014306
    [11] Xia Hui-Jun, Ma Yuan-Liang, Liu Ya-Xiong. Analysis of the symmetry of the ambient noise and study of the noise reduction. Acta Physica Sinica, 2016, 65(14): 144302. doi: 10.7498/aps.65.144302
    [12] Jiao Shang-Bin, Ren Chao, Li Peng-Hua, Zhang Qing, Xie Guo. Stochastic resonance in an overdamped monostable system with multiplicative and additive α stable noise. Acta Physica Sinica, 2014, 63(7): 070501. doi: 10.7498/aps.63.070501
    [13] Ma Jing-Jie, Xia Hui, Tang Gang. Dynamic scaling behavior of the space-fractional stochastic growth equation with correlated noise. Acta Physica Sinica, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [14] Jiao Shang-Bin, Ren Chao, Huang Wei-Chao, Liang Yan-Ming. Parameter-induced stochastic resonance in multi-frequency weak signal detection with stable noise. Acta Physica Sinica, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [15] Dou Fei-Ling, Hu Yan-Qing, Li Yong, Fan Ying, Di Zeng-Ru. Random walks on spatial networks. Acta Physica Sinica, 2012, 61(17): 178901. doi: 10.7498/aps.61.178901
    [16] Zhang Guang-Li, Lü Xi-Lu, Kang Yan-Mei. Parameter-induced stochastic resonance in overdamped system with stable noise. Acta Physica Sinica, 2012, 61(4): 040501. doi: 10.7498/aps.61.040501
    [17] Zhang Yong-Peng, Liu Guo-Zhi, Shao Hao, Yang Zhan-Feng, Song Zhi-Min, Lin Yu-Zheng. Steady transmission characteristics of intense electron beams in one-dimensional drift spaces. Acta Physica Sinica, 2009, 58(10): 6973-6978. doi: 10.7498/aps.58.6973
    [18] Cao Jue-Neng, Guo Qi. Properties of spatial optical solitons to different degrees of nonlocality. Acta Physica Sinica, 2005, 54(8): 3688-3693. doi: 10.7498/aps.54.3688
    [19] Jiang Jin-Huan, Wang Yong-Long, Li Zi-Ping. Quantum theory of steady state photorefractive spatial solitons propagation. Acta Physica Sinica, 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
    [20] TANG YING-WU. THE NORMAL-MODE SOUND FIELD IN SHALLOW WATER HAVING A POSITIVE SOUND VELOCITY GRADIENT AND A RANDOM FLUCTUATION SURFACE. Acta Physica Sinica, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
Metrics
  • Abstract views:  6849
  • PDF Downloads:  351
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2016
  • Accepted Date:  09 October 2016
  • Published Online:  05 January 2017

/

返回文章
返回
Baidu
map