-
空间电子辐射环境中绝缘介质充放电特性与介质表面电荷交换过程或内部电荷迁移过程密切相关. 介质表面/内部电荷运动很大程度上取决于材料的微观特性, 空间电荷与陷阱是反映绝缘介质微观特性的重要参数. 本文综述了电子辐射环境中绝缘介质内部空间电荷和陷阱的形成、作用机理、测量方法、存在的问题及国内外研究现状. 首先, 简要介绍了入射电子与介质材料的相互作用机理及沉积电荷的形成; 分析了电子束辐射下介质内部电荷迁移模型, 辐射诱导电导模型(RIC模型)和电子-空穴对的产生/复合模型(GR模型)的优缺点; 对比分析了经典电声脉冲法(PEA)以及适用于电子束辐射下空间电荷测量的“短路PEA”和“开路PEA”, 并总结了电子辐射下PEA装置设计中存在的主要技术难点; 其次, 简要介绍了电子束辐射下陷阱的形成及作用机理, 分析了聚合物介质陷阱参数的提取方法, 如热刺激电流法、表面电位衰减法(电晕注入方式或电子辐射方式)、空间电荷衰减法, 指出在同一真空环境中完成电子注入和表面电位测量的方法较适合空间介质材料陷阱参数的表征, 并以聚酰亚胺为例, 进行了陷阱参数提取; 最后, 从理论模型、参数表征和测量技术等方面, 展望了空间绝缘介质亟需解决的科学问题.
Charging and discharging characteristics of dielectric in space electron radiation environment are closely related to the surface charge exchange process and internal charge transfer process. Surface or internal charge movement of dielectric depends largely on the microscopic characteristics of the material, and space charge and trap are important parameters reflecting the microscopic characteristics of dielectric. In this work, the formation, mechanism, measurement method, existing problems and research status of space charge and trap in insulation material in electronic radiation environment are reviewed. Firstly, the interaction mechanism between incident electron and dielectric material and the formation of deposition charge are briefly introduced. The advantages and disadvantages of radiation-induced conductance model and electron-hole pair generation/recombination model are analyzed. The classical electro-acoustic pulse method (PEA) and " short circuit PEA” and " open circuit PEA” which are suitable for space charge measurement under electron beam radiation are compared with each other and analyzed, and further, the main technical difficulties in designing PEA device under electron beam radiation are reviewed. Secondly, the methods of extracting trap parameters, including thermal stimulation current method, surface potential decay method, space charge decay method are compared with each other. It is pointed out that the method of injecting the electrons and the method of measuring the surface potential in the same vacuum environment are more suitable for measuring the trap parameters of space dielectric materials. Finally, the scientific problems that need solving in space insulation are prospected from the aspects of theoretical model, parameter characterization and measurement technology. -
Keywords:
- space radiation environment /
- space charge characteristics /
- trap distribution /
- electro-acoustic pulse method
[1] Lai S T 2011 Fundamentals of Spacecraft Charging (New Jersey: Princeton University Press) pp156–167
[2] 黎树添 著 (李盛涛, 郑晓泉, 陈玉, 闵道敏 译) 2015 航天器带电原理 (北京: 科学出版社) 第 135—141页
Lai S T (translated by Li S T, Zheng X Q, Chen Y, Min D M) 2015 Fundamentals of Spacecraft Charging (Beijing: Science Press) pp135–141 (in Chinese)
[3] Gupta S B, Kalaria K R, Vaghela N P 2014 IEEE Trans. Plasma Sci. 42 1072Google Scholar
[4] 李盛涛, 李国倡 2017 科学通报 62 990
Li S T, Li G C 2017 Chin. Sci. Bull. 62 990
[5] Koons H C, Mazur J E, Selesnick R S, Blake J B, Frnnell J F, Rober J L, Anderson P C 2000 6th Spacecraft Charging Technology Conference Massachusetts, United States, Sep. 1–4, 2000 p7
[6] 周远翔, 王宁华, 王云杉, 孙清, 梁曦东, 关志成 2008 电工技术学报 23 16Google Scholar
Zhou Y X, Wang N H, Wang Y S, Sun Q, Liang X D, Guan Z C 2008 Transactions of China Electrotechnical Society 23 16Google Scholar
[7] 辛正亮, 吴广宁, 徐慧慧, 罗杨, 曹开江 2011 绝缘材料 44 59Google Scholar
Xin X L, Wu G N, Xu H H, Luo Y, Cao K J 2011 Insulating Materials 44 59Google Scholar
[8] 李国倡, 李盛涛, 闵道敏, 朱远惟 2013 中国科学 43 375
Li G C, Li S T, Min D M, Zhu Y W 2013 Sci. China 43 375
[9] 廖瑞金, 周天春, Chen G, 杨丽君 2012 61 017201Google Scholar
Liao R J, Zhou T C, Chen G, Yang L J 2012 Acta Phys. Sin. 61 017201Google Scholar
[10] Zhou T C, Chen G, Liao R J, Xu Z Q, 2009 J. Appl. Phys. 110 043724
[11] Laurent C, Teyssedre G, Le R S, Baudoin F 2013 IEEE Trans. Dielectr. Electr. Insul. 20 357Google Scholar
[12] 杨百屯, 屠德民, 刘耀南 1992 应用科学学报 10 233
Yang B T, Tu D M, Liu Y N 1992 J. Appl. Phys. 10 233
[13] Haque N, Dalai S, Chatterjee B, Chakravorti S 2017 IEEE Trans. Electr. Insul. 24 1896Google Scholar
[14] Din D M, Mengu C, Arifur R K, Li S T 2012 IEEE Trans. Dielectr. Electr. Insul. 19 600Google Scholar
[15] Severine L R, Teyssedre G, Laurent C, Segur P 2006 J. Phys. D: Appl. Phys. 39 298
[16] Perrin C, Griseri V, Laurent C, Fukunaga K, Maeno T, Levy L, Payan D, Schwander D 2008 High Performance Polymers 20 535Google Scholar
[17] Perrin C, Griseri V, Laurent C, Fukunaga K 2008 IEEE Trans. Dielectr. Electr. Insul. 15 958Google Scholar
[18] Griseri V, Fukunaga K, Maeno T, Laurent C, Levy L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 891Google Scholar
[19] Hodges J L, Dennison J R, Dekany J, Wilson G, Evans A, Sim A 2014 IEEE Trans. Plasma Sci. 42 255Google Scholar
[20] Dennison J R, Brunson J, Swaminathan P, Green N W, Frederickson A R 2006 IEEE Trans. Plasma Sci. 34 2191Google Scholar
[21] 黄建国, 陈东 2004 地球 47 392Google Scholar
Huang J G, Chen D 2004 Chin. J. Geophys. 47 392Google Scholar
[22] 黄建国, 陈东 2004 53 961Google Scholar
Huang J G, Chen D 2004 Acta Phys. Sin. 53 961Google Scholar
[23] 全荣辉, 韩建伟, 张振龙 2013 64 245205Google Scholar
Quan R H, Han J W, Zhang Z L 2013 Acta Phys. Sin. 64 245205Google Scholar
[24] 秦晓刚, 贺德衍, 王骥 2009 58 684Google Scholar
Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684Google Scholar
[25] 陈益峰, 杨生胜, 秦晓刚, 柳青, 史亮, 孔风连, 汤道坦, 李存惠 2010 真空与低温 16 167
Chen Y F, Yang S S, Qin X G, Liu Q, Shi L, Kong F L, Tang D T, Li C H 2010 Vacuum and Cryogenics 16 167
[26] 李盛涛, 李国倡, 闵道敏, 赵妮 2013 62 059401Google Scholar
Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401Google Scholar
[27] 李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 63 209401Google Scholar
Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401Google Scholar
[28] 李国倡 2017 博士学位论文 (西安: 西安交通大学)
Li G C 2017 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)
[29] 李维勤, 郝杰, 张海波 2015 64 086801Google Scholar
Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801Google Scholar
[30] 易忠, 王松, 唐小金, 武占成, 张超 2015 64 125201Google Scholar
Yi Z, Wang S, Tang X J, Wu Z C, Zhang C 2015 Acta Phys. Sin. 64 125201Google Scholar
[31] 曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 62 149402Google Scholar
Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149402Google Scholar
[32] 曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 62 149401Google Scholar
Cao H F, Liu S F, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149401Google Scholar
[33] 范亚杰, 张希军, 孙永卫, 周立栋 2018 强激光与粒子束 30 114002
Fan Y J, Sun X J, Sun Y W, Zhou L D 2018 High Power Laser and Particle Beams. 30 114002
[34] Li G C, Li S T, Pan S M, Min D M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2393Google Scholar
[35] Min D M, Cho M, Li S T 2012 IEEE Trans. Dielectr. Electr. Insul. 19 2206Google Scholar
[36] Baudoin F, Le Roy S, Teyssedre G 2008 J. Phys. D: Appl. Phys. 41 025306Google Scholar
[37] Le Roy S, Baudoin F, Griseri V, Laurent C, Teyssedre G 2010 J. Phys. D: Appl. Phys. 43 315402Google Scholar
[38] Le Roy S, Baudoin F, Griseri V 2012 J. Appl. Phys. 112 023704Google Scholar
[39] Teyssedre G, Laurent C 2005 IEEE Trans. Dielectr. Electr. Insul. 12 857Google Scholar
[40] Boufayed F, Teyssèdre G, Laurent C 2006 J. Appl. Phys. 100 104105Google Scholar
[41] 刘晓东, 郑晓泉, 张要强, 杨生胜, 秦晓刚, 王立 2007 电工电能新技术 26 55Google Scholar
Liu X D, Zheng X Q, Zhang Y Q, Yang S S, Qin X G, Wang L 2007 Electrical and Electrical Technology 26 55Google Scholar
[42] 马丽婵, 郑晓泉, 刘晓东, 张要强 2007 中国电机工程学报 27 32Google Scholar
Ma L C, Zheng X Q, Liu X D, Zhang Y Q, Ma L C 2007 Proc. CSEE 27 32Google Scholar
[43] Li G C, Li S T, Pan S M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1846Google Scholar
[44] 高宇, 王小芳, 李楠, 许棒棒, 王继隆, 杜伯学 2019 高电压技术 45 2219
Gao Y, Wang X F, Li N, Xu B B, Wang J L, Du B X 2019 High Voltage 45 2219
[45] Shen W W, Mu H B, Zhang G J 2013 J. Appl. Phys. 113 083706Google Scholar
[46] Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar
[47] Wei Y H, Chen G, Zhang G J, Liu N, Li G C 2016 AIP Adv. 6 075120Google Scholar
[48] 张振军, 苗军, 王学强, 吴文斌, 杨沛, 郑晓泉 2014 高电压技术 40 117
Zhang Z J, Miao J, Wang X Q, Wu W B, Yang P, Zheng X Q 2014 High Voltage Engineering 40 117
-
表 1 绝缘介质陷阱参数提取方法对比
Table 1. Comparison of calculation methods of trap parameters.
方法 基本原理 优缺点 等温表面电位衰减法(ISPD) 采用电晕注入或电子辐射方式向介质表层注入电荷, 通过测量等温电位衰减曲线, 提取陷阱参数. 优点: 可以区分电子陷阱和空穴陷阱[39,45]; 电子辐射注入方
式更适合空间介质材料陷阱参数的测量[28,34].
缺点: 电荷注入深度较浅(约1—2 μm), 主要反映材料表面
或 表层陷阱信息; 不适用于较厚试样[46].热刺激电流法(TSC) 采用热刺激或光刺激使介质内部被捕获电荷脱陷, 通过分析电流特征峰, 提取陷阱参数. 优点: 反映材料内部陷阱信息; 可以区分陷阱能级[39,47].
缺点: 无法区分陷阱类型.电声脉冲法(PEA) 通过分析去压后总电荷量随时间的衰减规律, 提取陷阱参数. 优点: 可以反映介质内部电荷动态过程[9,10,47].
缺点: 无法区分陷阱类型; 计算模型有待完善. -
[1] Lai S T 2011 Fundamentals of Spacecraft Charging (New Jersey: Princeton University Press) pp156–167
[2] 黎树添 著 (李盛涛, 郑晓泉, 陈玉, 闵道敏 译) 2015 航天器带电原理 (北京: 科学出版社) 第 135—141页
Lai S T (translated by Li S T, Zheng X Q, Chen Y, Min D M) 2015 Fundamentals of Spacecraft Charging (Beijing: Science Press) pp135–141 (in Chinese)
[3] Gupta S B, Kalaria K R, Vaghela N P 2014 IEEE Trans. Plasma Sci. 42 1072Google Scholar
[4] 李盛涛, 李国倡 2017 科学通报 62 990
Li S T, Li G C 2017 Chin. Sci. Bull. 62 990
[5] Koons H C, Mazur J E, Selesnick R S, Blake J B, Frnnell J F, Rober J L, Anderson P C 2000 6th Spacecraft Charging Technology Conference Massachusetts, United States, Sep. 1–4, 2000 p7
[6] 周远翔, 王宁华, 王云杉, 孙清, 梁曦东, 关志成 2008 电工技术学报 23 16Google Scholar
Zhou Y X, Wang N H, Wang Y S, Sun Q, Liang X D, Guan Z C 2008 Transactions of China Electrotechnical Society 23 16Google Scholar
[7] 辛正亮, 吴广宁, 徐慧慧, 罗杨, 曹开江 2011 绝缘材料 44 59Google Scholar
Xin X L, Wu G N, Xu H H, Luo Y, Cao K J 2011 Insulating Materials 44 59Google Scholar
[8] 李国倡, 李盛涛, 闵道敏, 朱远惟 2013 中国科学 43 375
Li G C, Li S T, Min D M, Zhu Y W 2013 Sci. China 43 375
[9] 廖瑞金, 周天春, Chen G, 杨丽君 2012 61 017201Google Scholar
Liao R J, Zhou T C, Chen G, Yang L J 2012 Acta Phys. Sin. 61 017201Google Scholar
[10] Zhou T C, Chen G, Liao R J, Xu Z Q, 2009 J. Appl. Phys. 110 043724
[11] Laurent C, Teyssedre G, Le R S, Baudoin F 2013 IEEE Trans. Dielectr. Electr. Insul. 20 357Google Scholar
[12] 杨百屯, 屠德民, 刘耀南 1992 应用科学学报 10 233
Yang B T, Tu D M, Liu Y N 1992 J. Appl. Phys. 10 233
[13] Haque N, Dalai S, Chatterjee B, Chakravorti S 2017 IEEE Trans. Electr. Insul. 24 1896Google Scholar
[14] Din D M, Mengu C, Arifur R K, Li S T 2012 IEEE Trans. Dielectr. Electr. Insul. 19 600Google Scholar
[15] Severine L R, Teyssedre G, Laurent C, Segur P 2006 J. Phys. D: Appl. Phys. 39 298
[16] Perrin C, Griseri V, Laurent C, Fukunaga K, Maeno T, Levy L, Payan D, Schwander D 2008 High Performance Polymers 20 535Google Scholar
[17] Perrin C, Griseri V, Laurent C, Fukunaga K 2008 IEEE Trans. Dielectr. Electr. Insul. 15 958Google Scholar
[18] Griseri V, Fukunaga K, Maeno T, Laurent C, Levy L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 891Google Scholar
[19] Hodges J L, Dennison J R, Dekany J, Wilson G, Evans A, Sim A 2014 IEEE Trans. Plasma Sci. 42 255Google Scholar
[20] Dennison J R, Brunson J, Swaminathan P, Green N W, Frederickson A R 2006 IEEE Trans. Plasma Sci. 34 2191Google Scholar
[21] 黄建国, 陈东 2004 地球 47 392Google Scholar
Huang J G, Chen D 2004 Chin. J. Geophys. 47 392Google Scholar
[22] 黄建国, 陈东 2004 53 961Google Scholar
Huang J G, Chen D 2004 Acta Phys. Sin. 53 961Google Scholar
[23] 全荣辉, 韩建伟, 张振龙 2013 64 245205Google Scholar
Quan R H, Han J W, Zhang Z L 2013 Acta Phys. Sin. 64 245205Google Scholar
[24] 秦晓刚, 贺德衍, 王骥 2009 58 684Google Scholar
Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684Google Scholar
[25] 陈益峰, 杨生胜, 秦晓刚, 柳青, 史亮, 孔风连, 汤道坦, 李存惠 2010 真空与低温 16 167
Chen Y F, Yang S S, Qin X G, Liu Q, Shi L, Kong F L, Tang D T, Li C H 2010 Vacuum and Cryogenics 16 167
[26] 李盛涛, 李国倡, 闵道敏, 赵妮 2013 62 059401Google Scholar
Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401Google Scholar
[27] 李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 63 209401Google Scholar
Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401Google Scholar
[28] 李国倡 2017 博士学位论文 (西安: 西安交通大学)
Li G C 2017 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)
[29] 李维勤, 郝杰, 张海波 2015 64 086801Google Scholar
Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801Google Scholar
[30] 易忠, 王松, 唐小金, 武占成, 张超 2015 64 125201Google Scholar
Yi Z, Wang S, Tang X J, Wu Z C, Zhang C 2015 Acta Phys. Sin. 64 125201Google Scholar
[31] 曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 62 149402Google Scholar
Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149402Google Scholar
[32] 曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 62 149401Google Scholar
Cao H F, Liu S F, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149401Google Scholar
[33] 范亚杰, 张希军, 孙永卫, 周立栋 2018 强激光与粒子束 30 114002
Fan Y J, Sun X J, Sun Y W, Zhou L D 2018 High Power Laser and Particle Beams. 30 114002
[34] Li G C, Li S T, Pan S M, Min D M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2393Google Scholar
[35] Min D M, Cho M, Li S T 2012 IEEE Trans. Dielectr. Electr. Insul. 19 2206Google Scholar
[36] Baudoin F, Le Roy S, Teyssedre G 2008 J. Phys. D: Appl. Phys. 41 025306Google Scholar
[37] Le Roy S, Baudoin F, Griseri V, Laurent C, Teyssedre G 2010 J. Phys. D: Appl. Phys. 43 315402Google Scholar
[38] Le Roy S, Baudoin F, Griseri V 2012 J. Appl. Phys. 112 023704Google Scholar
[39] Teyssedre G, Laurent C 2005 IEEE Trans. Dielectr. Electr. Insul. 12 857Google Scholar
[40] Boufayed F, Teyssèdre G, Laurent C 2006 J. Appl. Phys. 100 104105Google Scholar
[41] 刘晓东, 郑晓泉, 张要强, 杨生胜, 秦晓刚, 王立 2007 电工电能新技术 26 55Google Scholar
Liu X D, Zheng X Q, Zhang Y Q, Yang S S, Qin X G, Wang L 2007 Electrical and Electrical Technology 26 55Google Scholar
[42] 马丽婵, 郑晓泉, 刘晓东, 张要强 2007 中国电机工程学报 27 32Google Scholar
Ma L C, Zheng X Q, Liu X D, Zhang Y Q, Ma L C 2007 Proc. CSEE 27 32Google Scholar
[43] Li G C, Li S T, Pan S M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1846Google Scholar
[44] 高宇, 王小芳, 李楠, 许棒棒, 王继隆, 杜伯学 2019 高电压技术 45 2219
Gao Y, Wang X F, Li N, Xu B B, Wang J L, Du B X 2019 High Voltage 45 2219
[45] Shen W W, Mu H B, Zhang G J 2013 J. Appl. Phys. 113 083706Google Scholar
[46] Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar
[47] Wei Y H, Chen G, Zhang G J, Liu N, Li G C 2016 AIP Adv. 6 075120Google Scholar
[48] 张振军, 苗军, 王学强, 吴文斌, 杨沛, 郑晓泉 2014 高电压技术 40 117
Zhang Z J, Miao J, Wang X Q, Wu W B, Yang P, Zheng X Q 2014 High Voltage Engineering 40 117
计量
- 文章访问数: 10542
- PDF下载量: 160
- 被引次数: 0