Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-assembly diblock copolymers confined between mixed brush-grafted surfaces

Fan Wen-Liang Sun Min-Na Zhang Jin-Jun Pan Jun-Xing Guo Yu-Qi Li Ying Li Chun-Rong Wang Bao-Feng

Citation:

Self-assembly diblock copolymers confined between mixed brush-grafted surfaces

Fan Wen-Liang, Sun Min-Na, Zhang Jin-Jun, Pan Jun-Xing, Guo Yu-Qi, Li Ying, Li Chun-Rong, Wang Bao-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The confined environment plays a very important role in the phase separation of copolymers, which can change bulk phase behaviors of copolymers. The different confinement conditions can induce the formations of various interesting and novel morphologies, which can be used in a variety of nanotechnology applications such as high-density medium storage, nanolithography and photonic crystals. The grafting of polymers to confined surfaces is an efficient means for tailoring surface properties. In this work, we investigate the effect on architecture of the AB diblock copolymer confined between mixed brush-grafted surfaces by using self-consistent field theory. The brush contains two types of homopolymers. We study the effects of the fraction of A block, grafted period and the volume fraction of the polymer brush, the distance between two surfaces and the interaction strength between two blocks on the morphology. 1) With the increase of the fraction of A block (fA), the phase morphology changes from the A-block hexagonal cylinder to the parallel lamellae, to the curving lamellae, and then to the B-block hexagonal cylinder. The period of hexagonal cylinder and curving lamellae is equal to the grafted period of the polymer brush due to the influence of the polymer brush. 2) The grafted period of polymer brush is a very important factor for the morphology of diblock copolymer. When fA=0.3, we change the grafted period of the polymer brush. We obtain the phase transition from the hexagonal cylinder to the alternating phase of tetragonal and hexagonal cylinder, then to the alternating phase of tetragonal and octagonal cylinder. When fA=0.4, the structure changes from the hexagonal cylinder to the order phase of the waving lamellae and cylinder with the increase of the grafted period of the polymer brush. Compared with the single homopolymer brush system, the mixed brush enlarges the range of ordered phase and reduces the range of disordered phase. Block copolymers are prone to forming cylinder in mixed brush system and tending to form lamellae in single homopolymer brush system. 3) When fA=0.3, we obtain the phase transition from the hexagonal cylinder to the one-layered cylinder phase by increasing the volume fraction of the polymer brush. This transition is different from that of the single homopolymer brush system. Interestingly, when fA=0.45, the structure of AB block copolymer changes from the parallel lamellae to the perpendicular lamellae with the increase of the volume fraction of the polymer brush. The entropic energy plays an important role in this transition process. Similarly, we also observe the phase transition from the parallel lamellae to the perpendicular lamellae by decrease the distance between two surfaces. 4) We construct the phase diagram for a range of the fraction of A block and the interaction strength. The results provide an effective approach to obtaining the desired microstructures for fabricating nanomaterials.
      Corresponding author: Sun Min-Na, sunminna331@163.com;zhangjinjun@sxnu.edu.cn ; Zhang Jin-Jun, sunminna331@163.com;zhangjinjun@sxnu.edu.cn
    • Funds: Project Supported by the Provincial Natural Science Foundation of Shanxi Province, China (Grant No. 2015011004), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.
    [1]

    Matsen M W 1998J. Chem. Phys. 108 785

    [2]

    Srinivas G, Discher D E, Klein M L 2004Nat. Mater. 3 638

    [3]

    Glass R, Moller M, Spatz J P 2003Nanotechnology 14 1153

    [4]

    Sun R G, Wang Y Z, Wang D K, Zheng Q B, Kyllo E M, Gustafson T L, Wang F S, Epstein A J 2000Synth. Met. 111 595

    [5]

    Yoon J, Lee W, Thomas E L 2006Nano Lett. 6 2211

    [6]

    Yoon J, Mathers R T, Coates G W, Thomas E L 2006Macromolecules 39 1913

    [7]

    Sheihet L, Piotrowska K, Dubin R A, Kohn J, Devore D 2007Biomacromolecules 8 998

    [8]

    Ding H M, Ma Y Q 2015Small 11 1055

    [9]

    Li W H, Mưller M 2015Annu. Rev. Chem. Biomol. Eng. 6 187

    [10]

    Li W H, Nealey P F, de Pablo J J, Mưller M 2014Phys. Rev. Lett. 113 168301

    [11]

    Kim S O, Kim B H, Kim K, Koo C M, Stoykovich M P, Nealey P F, Solak H H 2006Macromolecules 39 5466

    [12]

    Mishra V, Fredrickson G H, Kramer E J 2012ACS Nano 6 2629

    [13]

    Huinink H P, Brokken-Zijp J C M, van Dijk M A, Sevink G J A 2000J. Chem. Phys. 112 2452

    [14]

    Wang Q, Nealley P F, de Pablo J J 2001Macromolecules 34 3458

    [15]

    Pereira G G 2001Phys. Rev. E 63 061809

    [16]

    Matsen M W 2006Macromolecules 39 5512

    [17]

    Yang Y Z, Qiu F, Zhang H D, Yang Y L 2006Polymer 47 2205

    [18]

    Zhang T T, Deng H L, Yang T, Li W H 2015Polymer 65 168

    [19]

    Xu Y C, Li W H, Qiu F, Lin Z Q 2014Nanoscale 6 6844

    [20]

    Laachi N, Delaney K T, Kim B, Hur S M, Bristol R, Shykind D, Weinheimer C J, Fredrickson G H 2015Polym. Phys. 53 142

    [21]

    Peters B L, Rathsack B, Somervell M, Nakano T, Schmid G, de Pablo J J 2015Polym. Phys. 53 430

    [22]

    Shin K, Xiang H Q, Moon S I, Kim T, McCarthy T J, Russell T P 2004Science 306 76

    [23]

    Xiao X Q, Huang Y M, Liu H L, Hu Y 2007Macromol. Theor. Simul. 16 166

    [24]

    Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J, Russell T P 2005Macromolecules 38 1055

    [25]

    Li W H, Wickham R A, Garbary R A 2006Macromolecules 39 806

    [26]

    Yu B, Sun P C, Chen T H, Jin Q H, Ding D T, Li B H, Shi A C 2006Phys. Rev. Lett. 96 138306

    [27]

    Yu B, Deng J H, Li B H, Shi A C 2014Soft Matter 10 6831

    [28]

    Li L, Matsunaga K, Zhu J T, Higuchi T, Yabu H, Shimomura M, Jinnai H, Hayward R C, Russell T P 2010Macromolecules 43 7807

    [29]

    Cheng J Y, Ross C A, Smith H I, Thomas E L 2006Adv. Mater. 18 2505

    [30]

    Wu X F, Dzenis Y A 2006J. Chem. Phys. 125 174707

    [31]

    Petrus P, Lisal M, Brennan J K 2010Langmuir 26 14680

    [32]

    Tröndle M, Kondrat S, Gambassi A, Harnau L, Dietrich S 2010J. Chem. Phys. 133 074702

    [33]

    Shin D O, Kim B H, Kang J H, Jeong S J, Park S H, Lee Y H, Kim S O 2009Macromolecules 42 1189

    [34]

    Stoykovich M P, Daoulas K C, Mller M, Kang H, de Pablo J J, Nealey P F 2010Macromolecules 43 2334

    [35]

    Ren C L, Chen K, Ma Y Q 2005J. Chem. Phys. 122 154904

    [36]

    Ren C L, Ma Y Q 2005Phys. Rev. E72 051804

    [37]

    Jiang Z B, Wang R, Xue G 2009Chin. J. Polym. Sci. 27 583

    [38]

    Wang R, Zhang S N, Qiu Y D 2011Polymer 52 586

    [39]

    Jiang Z B, Xu C, Qiu Y D, Wang X L, Zhou D S, Xue G 2014Nanoscale. Res. Lett. 9 359

    [40]

    Curk T, Martinez-Veracoechea F J, Frenkel D, Dobnikar J 2014Nano Lett. 14 2617

    [41]

    Li M, Zhu Y J 2008Acta Phys. Sin. 57 7555(in Chinese)[李明, 诸跃进2008 57 7555]

    [42]

    Li Y, Sun M N, Zhang J J, Pan J X, Guo Y Q, Wang B F, Wu H S 2015Chin. Phys. B 24 126403

    [43]

    Bae D, Jeon G, Jinnai H, Huh J, Kim J K 2013Macromolecules 46 5301

    [44]

    Lee D, Kim M H, Bae D, Jeon G, Kim M, Kwak J, Park S J, Kim J U, Kim J K 2014Macromolecules 47 3997

    [45]

    Hur S M, Frischknecht A L, Huber D L, Fredrickson G H 2011Soft Matter 7 8776

    [46]

    Polotsky A A, Leermakers F A M, Birshtein T M 2015Macromolecules 48 2263

    [47]

    Drolet F, Fredrickson G H 1999Phys. Rev. Lett. 83 4317

    [48]

    Fredrickson G H, Ganesan V, Drolet F 2002Macromolecules 35 16

    [49]

    Li W H, Liu M J, Qiu F 2013J. Phys. Chem. B 117 5280

    [50]

    Matsen M W, Bates F S 1997J. Chem. Phys. 106 2436

    [51]

    Wu W K, Zhang L N, Liu S D, Ren H R, Zhou X Y, Li H 2016J. Am. Chem. Soc. 138 2815

    [52]

    He Y Z, Li X Y, Li H, Jiang Y Y, Bian X F 2014Nanoscale 6 4217

  • [1]

    Matsen M W 1998J. Chem. Phys. 108 785

    [2]

    Srinivas G, Discher D E, Klein M L 2004Nat. Mater. 3 638

    [3]

    Glass R, Moller M, Spatz J P 2003Nanotechnology 14 1153

    [4]

    Sun R G, Wang Y Z, Wang D K, Zheng Q B, Kyllo E M, Gustafson T L, Wang F S, Epstein A J 2000Synth. Met. 111 595

    [5]

    Yoon J, Lee W, Thomas E L 2006Nano Lett. 6 2211

    [6]

    Yoon J, Mathers R T, Coates G W, Thomas E L 2006Macromolecules 39 1913

    [7]

    Sheihet L, Piotrowska K, Dubin R A, Kohn J, Devore D 2007Biomacromolecules 8 998

    [8]

    Ding H M, Ma Y Q 2015Small 11 1055

    [9]

    Li W H, Mưller M 2015Annu. Rev. Chem. Biomol. Eng. 6 187

    [10]

    Li W H, Nealey P F, de Pablo J J, Mưller M 2014Phys. Rev. Lett. 113 168301

    [11]

    Kim S O, Kim B H, Kim K, Koo C M, Stoykovich M P, Nealey P F, Solak H H 2006Macromolecules 39 5466

    [12]

    Mishra V, Fredrickson G H, Kramer E J 2012ACS Nano 6 2629

    [13]

    Huinink H P, Brokken-Zijp J C M, van Dijk M A, Sevink G J A 2000J. Chem. Phys. 112 2452

    [14]

    Wang Q, Nealley P F, de Pablo J J 2001Macromolecules 34 3458

    [15]

    Pereira G G 2001Phys. Rev. E 63 061809

    [16]

    Matsen M W 2006Macromolecules 39 5512

    [17]

    Yang Y Z, Qiu F, Zhang H D, Yang Y L 2006Polymer 47 2205

    [18]

    Zhang T T, Deng H L, Yang T, Li W H 2015Polymer 65 168

    [19]

    Xu Y C, Li W H, Qiu F, Lin Z Q 2014Nanoscale 6 6844

    [20]

    Laachi N, Delaney K T, Kim B, Hur S M, Bristol R, Shykind D, Weinheimer C J, Fredrickson G H 2015Polym. Phys. 53 142

    [21]

    Peters B L, Rathsack B, Somervell M, Nakano T, Schmid G, de Pablo J J 2015Polym. Phys. 53 430

    [22]

    Shin K, Xiang H Q, Moon S I, Kim T, McCarthy T J, Russell T P 2004Science 306 76

    [23]

    Xiao X Q, Huang Y M, Liu H L, Hu Y 2007Macromol. Theor. Simul. 16 166

    [24]

    Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J, Russell T P 2005Macromolecules 38 1055

    [25]

    Li W H, Wickham R A, Garbary R A 2006Macromolecules 39 806

    [26]

    Yu B, Sun P C, Chen T H, Jin Q H, Ding D T, Li B H, Shi A C 2006Phys. Rev. Lett. 96 138306

    [27]

    Yu B, Deng J H, Li B H, Shi A C 2014Soft Matter 10 6831

    [28]

    Li L, Matsunaga K, Zhu J T, Higuchi T, Yabu H, Shimomura M, Jinnai H, Hayward R C, Russell T P 2010Macromolecules 43 7807

    [29]

    Cheng J Y, Ross C A, Smith H I, Thomas E L 2006Adv. Mater. 18 2505

    [30]

    Wu X F, Dzenis Y A 2006J. Chem. Phys. 125 174707

    [31]

    Petrus P, Lisal M, Brennan J K 2010Langmuir 26 14680

    [32]

    Tröndle M, Kondrat S, Gambassi A, Harnau L, Dietrich S 2010J. Chem. Phys. 133 074702

    [33]

    Shin D O, Kim B H, Kang J H, Jeong S J, Park S H, Lee Y H, Kim S O 2009Macromolecules 42 1189

    [34]

    Stoykovich M P, Daoulas K C, Mller M, Kang H, de Pablo J J, Nealey P F 2010Macromolecules 43 2334

    [35]

    Ren C L, Chen K, Ma Y Q 2005J. Chem. Phys. 122 154904

    [36]

    Ren C L, Ma Y Q 2005Phys. Rev. E72 051804

    [37]

    Jiang Z B, Wang R, Xue G 2009Chin. J. Polym. Sci. 27 583

    [38]

    Wang R, Zhang S N, Qiu Y D 2011Polymer 52 586

    [39]

    Jiang Z B, Xu C, Qiu Y D, Wang X L, Zhou D S, Xue G 2014Nanoscale. Res. Lett. 9 359

    [40]

    Curk T, Martinez-Veracoechea F J, Frenkel D, Dobnikar J 2014Nano Lett. 14 2617

    [41]

    Li M, Zhu Y J 2008Acta Phys. Sin. 57 7555(in Chinese)[李明, 诸跃进2008 57 7555]

    [42]

    Li Y, Sun M N, Zhang J J, Pan J X, Guo Y Q, Wang B F, Wu H S 2015Chin. Phys. B 24 126403

    [43]

    Bae D, Jeon G, Jinnai H, Huh J, Kim J K 2013Macromolecules 46 5301

    [44]

    Lee D, Kim M H, Bae D, Jeon G, Kim M, Kwak J, Park S J, Kim J U, Kim J K 2014Macromolecules 47 3997

    [45]

    Hur S M, Frischknecht A L, Huber D L, Fredrickson G H 2011Soft Matter 7 8776

    [46]

    Polotsky A A, Leermakers F A M, Birshtein T M 2015Macromolecules 48 2263

    [47]

    Drolet F, Fredrickson G H 1999Phys. Rev. Lett. 83 4317

    [48]

    Fredrickson G H, Ganesan V, Drolet F 2002Macromolecules 35 16

    [49]

    Li W H, Liu M J, Qiu F 2013J. Phys. Chem. B 117 5280

    [50]

    Matsen M W, Bates F S 1997J. Chem. Phys. 106 2436

    [51]

    Wu W K, Zhang L N, Liu S D, Ren H R, Zhou X Y, Li H 2016J. Am. Chem. Soc. 138 2815

    [52]

    He Y Z, Li X Y, Li H, Jiang Y Y, Bian X F 2014Nanoscale 6 4217

  • [1] Shi Zi-Xuan, Jin Yan, Jin Yi-Yang, Tian Wen-De, Zhang Tian-Hui, Chen Kang. Gel transition of active triblock copolymers. Acta Physica Sinica, 2024, 73(17): 170501. doi: 10.7498/aps.73.20240796
    [2] Zhou Li-Li, Hu Xin-Yue, Mu Zhong-Lin, Zhang Rui, Zheng Yue. Far-field calculation of an arbitrarily oriented electric dipole in horizontal layered confined space. Acta Physica Sinica, 2022, 71(20): 200301. doi: 10.7498/aps.71.20220545
    [3] Liu Chun-Jie, Zhao Xin-Jun, Gao Zhi-Fu, Jiang Zhong-Ying. Modeling study of adsorption/desorption of proteins by polymer mixed brush. Acta Physica Sinica, 2021, 70(22): 224701. doi: 10.7498/aps.70.20211219
    [4] Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Single-molecule probes revealed dynamics of confined nano-regions in miscible polymer blends. Acta Physica Sinica, 2019, 68(14): 148201. doi: 10.7498/aps.68.20190423
    [5] Zhang Hong, Zong Yi-Wu, Yang Ming-Cheng, Zhao Kun. The dynamics of self-propelled Janus microspheres near obstacles with different geometries. Acta Physica Sinica, 2019, 68(13): 134702. doi: 10.7498/aps.68.20190711
    [6] Liang Qin, Jeff Z. Y. Chen. Recent theoretical development in confined liquid-crystal polymers. Acta Physica Sinica, 2016, 65(17): 174201. doi: 10.7498/aps.65.174201
    [7] Wu Chen-Xu, Yan Da-Dong, Xing Xiang-Jun, Hou Mei-Ying. A summary of soft matter theories. Acta Physica Sinica, 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [8] Fan Juan-Juan, Yu Xiu-Ling, Liang Xue-Mei. Self-consistent field simulation of hierarchical self-assembly structures from AB/CD block copolymer blends. Acta Physica Sinica, 2013, 62(15): 158105. doi: 10.7498/aps.62.158105
    [9] Fan Bing-Bing, Wang Li-Na, Wen He-Jing, Guan Li, Wang Hai-Long, Zhang Rui. Study on the structure of water chain encapsulated in carbon nanotube by density functional theory. Acta Physica Sinica, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [10] Liu Qi-Neng. Transmission characteristics of elastic wave in 1D solid-solid cylindrical phononic crystal. Acta Physica Sinica, 2011, 60(3): 034301. doi: 10.7498/aps.60.034301
    [11] Liu Qi-Neng. The mode and defect mode of electromagnetic wave in rectangular doped photonic crystal. Acta Physica Sinica, 2010, 59(4): 2551-2555. doi: 10.7498/aps.59.2551
    [12] Li Ming, Zhu Yue-Jin. Phase diagram of diblock copolymer confined in a cylindrical nanopore with polymer-grafted surface. Acta Physica Sinica, 2008, 57(12): 7555-7564. doi: 10.7498/aps.57.7555
    [13] Wang Zhen-Yu, Tang Chang-Jian. The self-consistent theory of the electron distribution and electro-magnetic field of a relativistic hollow electron beam in ion-channel. Acta Physica Sinica, 2007, 56(6): 3313-3317. doi: 10.7498/aps.56.3313
    [14] Guo Kun-Kun, Qiu Feng, Zhang Hong-Dong, Yang Yu-Liang. Polymer anchored fluid membrane. Acta Physica Sinica, 2006, 55(1): 155-161. doi: 10.7498/aps.55.155
    [15] Jiang Zhong-Ying, Yu Wei-Zhong, Xia Yuan-Fu. Study on temperature dependence and e+ irradiation time dependence of positron annihilation parameters about SEBS triblocks copolymer. Acta Physica Sinica, 2005, 54(7): 3434-3438. doi: 10.7498/aps.54.3434
    [16] Miao Jiang-Ping, Wu Zong-Han, Sun Cheng-Xiu, Sun Yue-Ming. The self-consistent theoretical study of the effect of surface plasmon and polariton on electronic transport. Acta Physica Sinica, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
    [17] LIU DE-SHENG, WANG LU-XIA, CHEN YAN-XUE, HAN SHENG-HAO, XIE SHI-JIE, MEI LIANG-MO. GEOMETRIC PROPERTIES OF CHARGED -(PA)4-(PPP)m-(PA)4-TRIBLOCK COPOLYMERS. Acta Physica Sinica, 2001, 50(9): 1763-1768. doi: 10.7498/aps.50.1763
    [18] MENG XU-JUN, ZONG XIAO-PING, BAI YUN, SUN YONG-SHENG, ZHANG JING-LIN. SELF-CONSISTENT CALCULATION OF ATOMIC STRUCTURE FOR MIXTURE. Acta Physica Sinica, 2000, 49(11): 2133-2138. doi: 10.7498/aps.49.2133
    [19] LI XIAN-SHU. A MATRIX THEORY FOR OPTICAL PASSIVE RESONATORS (IN CYLINDRICAL COORDINATES) (I)——MATRIX EQUATION OF THE SELF-CONSISTENT FIELD. Acta Physica Sinica, 1983, 32(8): 990-1001. doi: 10.7498/aps.32.990
    [20] FAN HAI-FU, HAN FU-SEN. RESTRAINED PERMUTATION OF THE STARTING PHASES. Acta Physica Sinica, 1981, 30(7): 921-927. doi: 10.7498/aps.30.921
Metrics
  • Abstract views:  5600
  • PDF Downloads:  148
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2016
  • Accepted Date:  23 August 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map