-
The manipulation of double emulsion droplet via shear flow field is widely encountered in microfluidic devices. However, the interface evolution and hydrodynamics behavior of double emulsion droplet in shear flow is less understood till now. In this paper, a theoretical model of double emulsion droplet in a Couette flow device is developed and numerically analyzed to characterize the interface behavior of incompressible double emulsion droplet, which is also verified by a visualization experiment. Based on this model, the mechanisms underlying the steady deformation of double emulsion droplet under shear are investigated, and the effects of radius ratio of inner droplet to the outer one and viscosities of working fluids on the steady deformation are discussed. The results indicate that the steady deformation of double emulsion droplet in the shear increases with the rise in capillary number, and the deformation resistance of inner droplet is larger than that of the outer droplet. With increasing the radius ratio of inner droplet to the outer one, the interaction between the inner and outer droplets becomes great and thus the deformation degree of the inner droplet is increased. In addition, the effect of big deformation resistance by the inner droplet tends to be obvious, leading to decreasing the deformation degree of outer droplet. The viscosities of both inner and outer droplets provide a resistance for the deformation of double emulsion droplet. With the rises in viscosities of inner and outer droplets, the deformation degree of integral double emulsion droplet decreases. In addition, the effect of outer droplet viscosity on the steady deformation is more obvious than that of the inner droplet.
-
Keywords:
- double emulsion droplet /
- shear flow /
- deformation characteristics /
- visualization
[1] Lee D, Weitz D A 2008 Adv. Mater. 20 3498
[2] Shum H C, Zhao Y J, Kim S H, Weitz D A 2011 Angew. Chem. Int. Ed. 123 1686
[3] Zhao Y J, Zhao X W, Hu J, Xu M, Zhao W J, Sun L G, Zhu C, Xu H, Gu Z Z 2009 Adv. Mater. 21 569
[4] Bychkov V, Modestov M, Law C K 2015 Prog. Energy Combust. Sci. 47 32
[5] Moreau L, Levassort C, Blondel B, de Nonancourt C, Croix C, Thibonnet J, Balland-Longeau A 2009 Laser Part. Beams 27 537
[6] Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese)[徐威, 兰忠, 彭本利, 温荣福, 马学虎2015 64 216801]
[7] Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese)[黄虎, 洪宁, 梁宏, 施保昌, 柴振华2016 65 084702]
[8] Mei M F, Yu B M, Luo L, Cai J C 2010 Chin. Phys. Lett. 27 076862
[9] Stone H A 1994 Annu. Rev. Fluid Mech. 26 65
[10] Renardy Y 2008 Int. J. Multiphase Flow 34 1185
[11] Guido S 2011 Curr. Opin. Colloid Interface Sci. 16 61
[12] Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S 2006 Phys. Rev. Lett. 97 054502
[13] Smith K A, Ottino J M, de la Cruz M O 2004 Phys. Rev. Lett. 93 204501
[14] Hua H, Shin J, Kim J 2014 Int. J. Heat Fluid Flow 50 63
[15] Patlazhan S, Vagner S, Kravchenko I 2015 Phys. Rev. E 91 063002
[16] Wang J T, Liu J X, Han J J, Guan J 2013 Phys. Rev. Lett. 110 066001
[17] Gao P, James J F 2011 J. Fluid Mech. 682 415
[18] Brackbill J U, Kothe D B, Zemach C A 1992 J. Comput. Phys. 100 335
[19] Hirt C W, Nichols B D 1981 J. Comput. Phys. 46 201
[20] Renardy Y, Cristini V 2001 Phys. Fluids 13 2161
[21] Taylor G I 1934 Proceedings of the Royal Society of London Series A 146 501
[22] Chen Y P, Wu L Y, Zhang L 2015 Int. J. Heat Mass Transfer 82 42
[23] Stone H A, Leal L G 1990 J. Fluid Mech. 211 123
-
[1] Lee D, Weitz D A 2008 Adv. Mater. 20 3498
[2] Shum H C, Zhao Y J, Kim S H, Weitz D A 2011 Angew. Chem. Int. Ed. 123 1686
[3] Zhao Y J, Zhao X W, Hu J, Xu M, Zhao W J, Sun L G, Zhu C, Xu H, Gu Z Z 2009 Adv. Mater. 21 569
[4] Bychkov V, Modestov M, Law C K 2015 Prog. Energy Combust. Sci. 47 32
[5] Moreau L, Levassort C, Blondel B, de Nonancourt C, Croix C, Thibonnet J, Balland-Longeau A 2009 Laser Part. Beams 27 537
[6] Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese)[徐威, 兰忠, 彭本利, 温荣福, 马学虎2015 64 216801]
[7] Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese)[黄虎, 洪宁, 梁宏, 施保昌, 柴振华2016 65 084702]
[8] Mei M F, Yu B M, Luo L, Cai J C 2010 Chin. Phys. Lett. 27 076862
[9] Stone H A 1994 Annu. Rev. Fluid Mech. 26 65
[10] Renardy Y 2008 Int. J. Multiphase Flow 34 1185
[11] Guido S 2011 Curr. Opin. Colloid Interface Sci. 16 61
[12] Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S 2006 Phys. Rev. Lett. 97 054502
[13] Smith K A, Ottino J M, de la Cruz M O 2004 Phys. Rev. Lett. 93 204501
[14] Hua H, Shin J, Kim J 2014 Int. J. Heat Fluid Flow 50 63
[15] Patlazhan S, Vagner S, Kravchenko I 2015 Phys. Rev. E 91 063002
[16] Wang J T, Liu J X, Han J J, Guan J 2013 Phys. Rev. Lett. 110 066001
[17] Gao P, James J F 2011 J. Fluid Mech. 682 415
[18] Brackbill J U, Kothe D B, Zemach C A 1992 J. Comput. Phys. 100 335
[19] Hirt C W, Nichols B D 1981 J. Comput. Phys. 46 201
[20] Renardy Y, Cristini V 2001 Phys. Fluids 13 2161
[21] Taylor G I 1934 Proceedings of the Royal Society of London Series A 146 501
[22] Chen Y P, Wu L Y, Zhang L 2015 Int. J. Heat Mass Transfer 82 42
[23] Stone H A, Leal L G 1990 J. Fluid Mech. 211 123
Catalog
Metrics
- Abstract views: 7148
- PDF Downloads: 260
- Cited By: 0