-
A theoretical model is developed to investigate vibro-acoustic characteristics of shear deformable periodic stiffened laminated composite panels in mean flow, based on the first-order shear deformation theory (FSDT). The convected wave equation and boundary condition are used to account for the exact coupling effect between mean flow and laminated panel. Stiffeners interact with the laminated panel through both the normal line forces and torsional moments. Analytic formulations for the transverse displacement spectra and sound pressure level (SPL) are yielded by employing the Fourier wavenumber transform and the stationary phase method. The model is validated by comparing with existing public data. Excellent agreement is obtained. Numerical results show that the effects of shear deformation and torsional motion of the stiffeners cannot be ignored in high frequency range. SPL can be reduced by increasing the speed of mean flow; it is possible to avoid SPL peaks by altering the thickness and stiffener spacing.
-
Keywords:
- mean flow /
- first-order shear deformation theory /
- laminated composite panels /
- wavenumber transform
[1] Wu H J, Jiang W K, Lu W B 2012 Acta Phys. Sin. 61 054301 (in Chinese) [吴海军, 蒋伟康, 鲁文波 2012 61 054301]
[2] Chen Y, Fu S X, Xu Y W, Zhou Q, Fan D X 2013 Acta Phys. Sin. 62 064701 (in Chinese) [陈蓥, 付世晓, 许玉旺, 周青, 范迪夏 2013 62 064701]
[3] Pan A, Fan J, Zhou L K 2012 Acta Phys. Sin. 61 214301 (in Chinese) [潘安, 范军, 卓琳凯 2012 61 214301]
[4] Jin Y Q, Pang F Z, Yao X L, Sun L P 2012 Acta Acoustic 37 611 (in Chinese) [金叶青, 庞福振, 姚熊亮, 孙丽萍 2012 声学学报 37 611]
[5] Mace B R 1980 J. Sound. Vib. 73 473
[6] Mace B R 1980 J. Sound. Vib. 71 435
[7] Mace B R 1981 J. Sound. Vib. 79 439
[8] Maxit L 2009 Appl. Acoust. 70 563
[9] Xin F X, Lu T J 2010 J. Mech. Phys. Solids 58 1374
[10] Xin F X, Lu T J 2010 Compos. Sci. Technol. 70 2198
[11] Yin X W, Gu X 2007 J. Sound. Vib. 306 877
[12] Cao X T, Hua H X, Zhang Z Y 2011 J. Sound. Vib. 330 4047
[13] Koval L R 1976 J. Acoust. Soc. Am. 59 1379
[14] Atalla N, Nicolas J 1995 J. Sound. Vib. 117 22
[15] Berry A 1990 J. Acoust. Soc. Am. 88 2792
[16] Schmidt P L, Frampton K D 2009 J. Sound. Vib. 328 243
[17] Huang H 2009 Acta Phys. Sin. 58 3655 (in Chinese) [黄虎 2009 58 3655]
[18] Wang Z F, Hu Y M, Meng Z, Ni M 2008 Acta Phys. Sin. 57 7022 (in Chinese) [王泽锋, 胡永明, 孟洲, 倪明 2008 57 7022]
[19] Ma H P, He X P, Lan Z K, Abulizi A 2012 Acta Phys. Sin. 61 194302 (in Chinese) [马焕培, 贺西平, 兰正康, 阿卜力孜· 阿卜来提 2012 61 194302]
-
[1] Wu H J, Jiang W K, Lu W B 2012 Acta Phys. Sin. 61 054301 (in Chinese) [吴海军, 蒋伟康, 鲁文波 2012 61 054301]
[2] Chen Y, Fu S X, Xu Y W, Zhou Q, Fan D X 2013 Acta Phys. Sin. 62 064701 (in Chinese) [陈蓥, 付世晓, 许玉旺, 周青, 范迪夏 2013 62 064701]
[3] Pan A, Fan J, Zhou L K 2012 Acta Phys. Sin. 61 214301 (in Chinese) [潘安, 范军, 卓琳凯 2012 61 214301]
[4] Jin Y Q, Pang F Z, Yao X L, Sun L P 2012 Acta Acoustic 37 611 (in Chinese) [金叶青, 庞福振, 姚熊亮, 孙丽萍 2012 声学学报 37 611]
[5] Mace B R 1980 J. Sound. Vib. 73 473
[6] Mace B R 1980 J. Sound. Vib. 71 435
[7] Mace B R 1981 J. Sound. Vib. 79 439
[8] Maxit L 2009 Appl. Acoust. 70 563
[9] Xin F X, Lu T J 2010 J. Mech. Phys. Solids 58 1374
[10] Xin F X, Lu T J 2010 Compos. Sci. Technol. 70 2198
[11] Yin X W, Gu X 2007 J. Sound. Vib. 306 877
[12] Cao X T, Hua H X, Zhang Z Y 2011 J. Sound. Vib. 330 4047
[13] Koval L R 1976 J. Acoust. Soc. Am. 59 1379
[14] Atalla N, Nicolas J 1995 J. Sound. Vib. 117 22
[15] Berry A 1990 J. Acoust. Soc. Am. 88 2792
[16] Schmidt P L, Frampton K D 2009 J. Sound. Vib. 328 243
[17] Huang H 2009 Acta Phys. Sin. 58 3655 (in Chinese) [黄虎 2009 58 3655]
[18] Wang Z F, Hu Y M, Meng Z, Ni M 2008 Acta Phys. Sin. 57 7022 (in Chinese) [王泽锋, 胡永明, 孟洲, 倪明 2008 57 7022]
[19] Ma H P, He X P, Lan Z K, Abulizi A 2012 Acta Phys. Sin. 61 194302 (in Chinese) [马焕培, 贺西平, 兰正康, 阿卜力孜· 阿卜来提 2012 61 194302]
Catalog
Metrics
- Abstract views: 6420
- PDF Downloads: 534
- Cited By: 0