-
In this paper we propose a class of 8th-order potential function, and discuss the bifurcation characteristic of such a system in detail. Then, a symmetric quad-stable system consisting of two small-scale bistable potentials on the left and right and an intermediate barrier is obtained. In order to analyze the quad-stable system characteristic effectively, under the combined action of periodic force and random force, the approximate analytical expression of the quad-stable system output response is established. Meanwhile, from the viewpoint of the energy, the work which is a process quantity is introduced to describe the capacity for work between the large-scale and small-scale bistable potential. It is found that the double stochastic resonance phenomenon does exist in the quad-stable system. The theoretical analysis and numerical simulation results indicate that when the height of the intermediate barrier is higher than the barrier height of the two small-scale bistable potentials on the left and right, as the noise intensity increases, the response of the quad-stable system transforms a small-amplitude vibration restricted in a small-scale bistable subsystem into a large-amplitude vibration across the intermediate barrier, and the work done by the periodic force presents a double-peak curve. To be more specific, as the noise intensity gradually increases from zero, the system response is first confined to a small-scale bistable potential. Under the joint action of the small-scale bistable potential, periodic force and random force, the small-scale stochastic resonance phenomenon occurs, and the first resonance peak appears. With the noise intensity increasing even further, the system response turns into the large-amplitude vibration between two small-scale bistable subsystems, resulting in the large-scale stochastic resonance phenomenon and a higher resonance peak. Thus, the work done by periodic force has the peak values at two different noise intensities, which means that the noise can induce the double stochastic resonance phenomenon in the quad-stable system. More importantly, it can be found that the small-scale stochastic resonance can enhance the effect of large-scale stochastic resonance.
[1] Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453Google Scholar
[2] Ghosh P K, Bag B C, Ray D S 2007 Phys. Rev. E 75 032101Google Scholar
[3] Repperger D W, Farris K A 2010 Int. J. Syst. Sci. 41 897Google Scholar
[4] Kenmoé G D, Ngouongo Y J W, Kofané T C 2015 J. Stat. Phys. 161 475Google Scholar
[5] Moon W, Balmforth N, Wettlaufer J S 2020 J. Phys. A: Math. Theor. 53 095001Google Scholar
[6] Fauve S, Heslot F 1983 Phys. Lett. A 97 5Google Scholar
[7] McNamara B, Wiesenfeld K, Roy R 1988 Phys. Rev. Lett. 60 2626Google Scholar
[8] 王珊, 王辅忠 2018 67 160502Google Scholar
Wang S, Wang F Z 2018 Acta Phys. Sin. 67 160502Google Scholar
[9] Monifi F, Zhang J, Özdemir S K, Peng B, Liu Y X, Bo F, Nori F, Yang L 2016 Nat. Photonics 10 399Google Scholar
[10] van der Groen O, Wenderoth N 2016 J. Neurosci. 36 5289Google Scholar
[11] He G T, Min C, Tian Y 2014 Acta Phys. Pol. B 45 29Google Scholar
[12] Liu J, Hu B, Yang F, Zang C L, Ding X J 2020 Commun. Nonlinear Sci. Numer. Simul. 85 105245Google Scholar
[13] Moreno M V, Barci D G, Arenas Z G 2020 Phys. Rev. E 101 062110Google Scholar
[14] Xu L, Yu T, Lai L, Zhao D Z, Deng C, Zhang L 2020 Commun. Nonlinear Sci. Numer. Simul. 83 105133Google Scholar
[15] 林敏, 黄咏梅, 方利民 2008 57 2048Google Scholar
Lin M, Huang Y M, Fang L M 2008 Acta Phys. Sin. 57 2048Google Scholar
[16] 王林泽, 赵文礼, 陈旋 2012 61 160501Google Scholar
Wang L Z, Zhao W L, Chen X 2012 Acta Phys. Sin. 61 160501Google Scholar
[17] He L F, Cao L, Zhang G, Yi T 2018 Chin. J. Phys. 56 1588Google Scholar
[18] Jin Y F, Xu P F 2018 14th International Federation of Automatic Control (IFAC) Workshop on Time Delay Systems (TDS) Budapest, HUNGARY, JUN 28-30, 2018 p189Google Scholar
[19] Nicolis C, Nicolis G 2017 Phys. Rev. E 95 032219Google Scholar
[20] Li J M, Chen X F, He Z J 2013 J. Sound Vib. 332 5999Google Scholar
[21] 赖志慧, 冷永刚 2015 64 200503Google Scholar
Lai Z H, Leng Y G 2015 Acta Phys. Sin. 64 200503Google Scholar
[22] Bi H H, Lei Y M, Han Y Y 2019 Physica A 525 1296Google Scholar
[23] Tang J C, Shi B Q, Li Z X, Li Y Z 2020 Chin. J. Phys. 66 50Google Scholar
[24] Vilar J M G, Rubi J M 1997 Phys. Rev. Lett. 78 2882Google Scholar
[25] Alfonsi L, Gammaitoni L, Santucci S, Bulsara A 2000 Phys. Rev. E 62 299Google Scholar
[26] 张晓燕, 徐伟, 周丙常 2011 60 060514Google Scholar
Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514Google Scholar
[27] Zhang X Y, Zheng X Y 2019 Indian J. Phys. 93 1051Google Scholar
[28] Iwai T 2001 J. Phys. Soc. Jpn. 70 353Google Scholar
[29] Iwai T 2001 Physica A 300 350Google Scholar
[30] McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854Google Scholar
-
表 1 系统结构与参数
$k$ 的关系Table 1. The relationship between potential structure form and parameter
$k$ .系统结构 $0 < k < 2$ $2 < k < 4$ $4 < k < 6$ 稳定不动点个数 4 3 2 $V\left( {x, k} \right)$的结构类型 四稳系统 三稳系统 双稳系统 -
[1] Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453Google Scholar
[2] Ghosh P K, Bag B C, Ray D S 2007 Phys. Rev. E 75 032101Google Scholar
[3] Repperger D W, Farris K A 2010 Int. J. Syst. Sci. 41 897Google Scholar
[4] Kenmoé G D, Ngouongo Y J W, Kofané T C 2015 J. Stat. Phys. 161 475Google Scholar
[5] Moon W, Balmforth N, Wettlaufer J S 2020 J. Phys. A: Math. Theor. 53 095001Google Scholar
[6] Fauve S, Heslot F 1983 Phys. Lett. A 97 5Google Scholar
[7] McNamara B, Wiesenfeld K, Roy R 1988 Phys. Rev. Lett. 60 2626Google Scholar
[8] 王珊, 王辅忠 2018 67 160502Google Scholar
Wang S, Wang F Z 2018 Acta Phys. Sin. 67 160502Google Scholar
[9] Monifi F, Zhang J, Özdemir S K, Peng B, Liu Y X, Bo F, Nori F, Yang L 2016 Nat. Photonics 10 399Google Scholar
[10] van der Groen O, Wenderoth N 2016 J. Neurosci. 36 5289Google Scholar
[11] He G T, Min C, Tian Y 2014 Acta Phys. Pol. B 45 29Google Scholar
[12] Liu J, Hu B, Yang F, Zang C L, Ding X J 2020 Commun. Nonlinear Sci. Numer. Simul. 85 105245Google Scholar
[13] Moreno M V, Barci D G, Arenas Z G 2020 Phys. Rev. E 101 062110Google Scholar
[14] Xu L, Yu T, Lai L, Zhao D Z, Deng C, Zhang L 2020 Commun. Nonlinear Sci. Numer. Simul. 83 105133Google Scholar
[15] 林敏, 黄咏梅, 方利民 2008 57 2048Google Scholar
Lin M, Huang Y M, Fang L M 2008 Acta Phys. Sin. 57 2048Google Scholar
[16] 王林泽, 赵文礼, 陈旋 2012 61 160501Google Scholar
Wang L Z, Zhao W L, Chen X 2012 Acta Phys. Sin. 61 160501Google Scholar
[17] He L F, Cao L, Zhang G, Yi T 2018 Chin. J. Phys. 56 1588Google Scholar
[18] Jin Y F, Xu P F 2018 14th International Federation of Automatic Control (IFAC) Workshop on Time Delay Systems (TDS) Budapest, HUNGARY, JUN 28-30, 2018 p189Google Scholar
[19] Nicolis C, Nicolis G 2017 Phys. Rev. E 95 032219Google Scholar
[20] Li J M, Chen X F, He Z J 2013 J. Sound Vib. 332 5999Google Scholar
[21] 赖志慧, 冷永刚 2015 64 200503Google Scholar
Lai Z H, Leng Y G 2015 Acta Phys. Sin. 64 200503Google Scholar
[22] Bi H H, Lei Y M, Han Y Y 2019 Physica A 525 1296Google Scholar
[23] Tang J C, Shi B Q, Li Z X, Li Y Z 2020 Chin. J. Phys. 66 50Google Scholar
[24] Vilar J M G, Rubi J M 1997 Phys. Rev. Lett. 78 2882Google Scholar
[25] Alfonsi L, Gammaitoni L, Santucci S, Bulsara A 2000 Phys. Rev. E 62 299Google Scholar
[26] 张晓燕, 徐伟, 周丙常 2011 60 060514Google Scholar
Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514Google Scholar
[27] Zhang X Y, Zheng X Y 2019 Indian J. Phys. 93 1051Google Scholar
[28] Iwai T 2001 J. Phys. Soc. Jpn. 70 353Google Scholar
[29] Iwai T 2001 Physica A 300 350Google Scholar
[30] McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854Google Scholar
Catalog
Metrics
- Abstract views: 5274
- PDF Downloads: 116
- Cited By: 0