搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于分析单轴/双轴双各向异性媒质电磁特性的快速传输矩阵法

樊久扬 张玉贤 冯晓丽 黄志祥

引用本文:
Citation:

用于分析单轴/双轴双各向异性媒质电磁特性的快速传输矩阵法

樊久扬, 张玉贤, 冯晓丽, 黄志祥

Rapid-Transfer Matrix Method for Analysis of Electromagnetic Properties of Uniaxial/Biaxial Biaxially Anisotropic Media

Fan Jiu-Yang, Zhang Yu-Xian, Feng Xiao-Li, Huang Zhi-Xiang
PDF
导出引用
  • 本文提出了一种高效分析单轴/双轴双各向异性媒质电磁特性的快速传输矩阵法(rapid-transfer matrix method,R-TMM)。该方法基于旋度麦克斯韦方程,构造了关于电场的齐次微分方程,并通过复杂的矩阵运算,导出用于特征值求解的布克四次方程。随后,从特征方程中提取单轴/双轴双各向异性媒质的特征值。在此基础之上,通过对层状结构中电磁场在分界面处切向连续性的深入研究,构建了适用于多层媒质中平面波传播的传输矩阵。结合上下行波在不同区域的传播关系,推导出单轴/双轴双各向异性传播系数的计算公式。最后,设计了单轴/双轴双各向异性材料模型,并对R-TMM和传统传输矩阵法(conventional-transfer matrix method,C-TMM)的计算结果进行了分析。数值实验表明,R-TMM不仅能够精确计算单轴/双轴双各向异性媒质的传输系数,而且可以实现计算效率的大幅度提升。该方法为科研人员开展单轴/双各向异性媒质电磁特性的研究提供了可靠且高效的计算策略。
    The employment of uniaxial/biaxial bianisotropic materials in the field of optical device manufacturing is widespread due to the distinctive electromagnetic response characteristics exhibited by such materials. To effectively analyze the electromagnetic properties of uniaxial/biaxial bianisotropic materials, rapid-transfer matrix method (R-TMM) is proposed to investigate the propagation process of plane waves in the media. Starting from the Maxwell’s equations in the time domain, the homogeneous differential equation about the electric field is constructed by processing the matrix containing dielectric and magnetic conductivity, electric and magnetic loss, tellegen and chirality carrier parameters, and the complex matrix operation is applied to that equation to get the booker quartic equation, and then the formulae method are utilized to obtain the eigenvalues in the uniaxial/biaxial bianisotropic media. Subsequently, the tangential continuity of layered media at the interface is employed to establish a transfer matrix for single-layered media. In the case of multi-layered media, the transfer matrix of plane waves propagating in multi-layered uniaxial/biaxial bianisotropic media can be obtained by means of a continuous iteration process based on the transfer matrix of single-layered media. The formula for calculating the propagation coefficient of uniaxial/biaxial bianisotropic materials can be derived based on the different upward and downward waves in the reflection/transmission region. Finally, the reliability and efficiency of R-TMM is verified from two numerical experiments with the plane waves incident at different angles on a uniaxial/biaxial bianisotropic media. The first experiment is designed as a single-layered biaxial bianisotropic model with more general electromagnetic parameters, and the second experiment is designed as a double-layered uniaxial and biaxial bianisotropic model consisting of common optical materials, which are composed of two non-magnetic materials, lithium niobate (LiNbLO3) and cadmium sulfide (CdS). The experimental results demonstrate that, in comparison with the conventional conventional-transfer matrix method (C-TMM), the R-TMM reduces the computational memory and CPU time required for calculating the reflection and transmission coefficients of the uniaxial/ biaxial bianisotropic model by over 98%, while maintaining the accuracy of the reflection and transmission coefficients calculation. Therefore, R-TMM provides an efficient and dependable approach for the design of complex optical devices and the analysis for uniaxial/biaxial bianisotropic propagation characteristics.
  • [1]

    Chen Y, Duan G, Xu C, Qin X, Zhao Q, Zhou H, Wang B 2024 Diam. Relat. Mater. 143 110939

    [2]

    Hosseini. K, Atlasbaf. Z 2018 IEEE Trans. Antennas Propag. 66 262

    [3]

    Ahmed F, Hassan T, Shoaib N 2020 IEEE Antennas Wirel. Propag. Lett. 19 1833

    [4]

    Dong. Z, Feng. X, Zhou H, Liu C, Zhang M, Liang W 2023 IEEE Trans. Geosci. Remote Sens. 61 1

    [5]

    Kong J A 1972 Proc. IEEE. 60 1036

    [6]

    Wang Y P 2007 Engineering Electrodynamics (2rd Ed.) (Xi’ an: Xidian University Press) pp23-24 (in Chinese) [王一平 2007 工程电动力学 (第二版) (西安: 西安电子科技大学出版社) 第23—24页]

    [7]

    Zarifi D, Soleimani M, Abdolali A 2014 IEEE Trans. Antennas Propag. 62 1538

    [8]

    Dimitriadis A I, Kantartzis N V, Tsiboukis T D 2013 IEEE Trans. Magn. 49 1769

    [9]

    Mousvai S M, Arand B A, Forooraghi K 2021 IEEE Access. 9 54241

    [10]

    Ozturk G, Ozturk G, Kaya Y, Barroso J J, Ertugrul M 2021 IEEE Trans. Antennas Propag. 69 7064

    [11]

    Karimi P, Rejaei B, Khavasi A 2023 IEEE Trans. Antennas Propag. 71 2507

    [12]

    Chen W, Huang H, Yang L X, Bo Y, Huang Z X 2023 Acta Phys. Sin. 72 060201 (in Chinese) [陈伟, 黄海, 杨利霞, 薄勇, 黄志祥 2023 72 060201]

    [13]

    Xie G D, Hou G L H, Niu K K, Feng N X, Fang M, Li Y S, Huang Z X 2023 Acta Phys. Sin. 72 060201 (in Chinese) [谢国大, 侯桂林, 牛凯坤, 冯乃星, 方明, 李迎松,黄志祥 2023 72 150201]

    [14]

    Demarest K 1987 IEEE Trans. Antennas Propag. 35 826

    [15]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi’ an: Xidian University Press) pp259-294 (in Chinese) [葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第259—294页]

    [16]

    Wang F, Ge D B, Wei B 2009 Acta Phys. Sin. 58 6356 (in Chinese) [王飞, 葛德彪, 魏兵 2009 58 6356]

    [17]

    Greenwood A D, Jin J M 1999 IEEE Trans. Antennas Propag. 47 1260

    [18]

    Sun H X, Xu B Q, Wang J J, Xu G D, Xu C G, Wang F 2009 Acta Phys. Sin. 58 6344 (in Chinese) [孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰 2009 58 6344]

    [19]

    Hanninen I, Nikoskinen K 2008 IEEE Trans. Antennas Propag. 56 278

    [20]

    Wang Z, Wang B Z 2014 Acta Phys. Sin. 63 120202 (in Chinese) [王哲, 王秉中 2009 63 120202]

    [21]

    Ge D B, Wei B 2011 Electromagnetic Waves Theory (Beijing: Science Press) pp 62-73 (in Chinese) [葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第62—73页]

    [22]

    Johnston T W 1969 Radio Sci. 4 729

    [23]

    Chen H C 1981 Radio Sci. 16 1213

    [24]

    Tan E L, Tan S Y 1999 IEEE Trans. Antennas Propag. 47 1820

    [25]

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702 (in Chinese) [郑宏兴, 葛德彪 2000 49 1702]

    [26]

    Jiang Y Y, Shi H Y, Zhang Y Q, Hou C F, Sun X D 2007 Chin Phys. 16 1956

    [27]

    Sarrafi P, Qian L 2012 IEEE J. Quantum Electron. 48 555

    [28]

    Wang F, Wei B 2019 Acta Phys. Sin. 68 244101 (in Chinese) [王飞, 魏兵2019 68 244101]

    [29]

    Zhang Y, Feng N, Wang G P, Zheng H 2021 IEEE Trans. Antennas Propag. 69 4727

  • [1] 李顺, 李正军, 屈檀, 李海英, 吴振森. 双零阶贝塞尔波束的传播及对单轴各向异性球的散射特性.  , doi: 10.7498/aps.71.20220491
    [2] 孙娟, 李晓霞, 张金浩, 申玉卓, 李艳雨. 多层单向耦合星形网络的特征值谱及同步能力分析.  , doi: 10.7498/aps.66.188901
    [3] 徐明明, 陆君安, 周进. 两层星形网络的特征值谱及同步能力.  , doi: 10.7498/aps.65.028902
    [4] 焦宝宝. 用重正交化Lanczos法求解大型非正交归一基稀疏矩阵的特征值问题.  , doi: 10.7498/aps.65.192101
    [5] 郝本建, 李赞, 万鹏武, 司江勃. 传感器网络基于特征值分解的信号被动定位技术.  , doi: 10.7498/aps.63.054304
    [6] 何圣仲, 周国华, 许建平, 吴松荣, 阎铁生, 张希. 谷值V2控制Boost变换器的精确建模与动力学分析.  , doi: 10.7498/aps.63.170503
    [7] 董建峰, 李杰. 单轴各向异性手征介质平板的反射和透射特性研究.  , doi: 10.7498/aps.62.064102
    [8] 梁义, 王兴元. 基于低阶矩阵最大特征值的复杂网络牵制混沌同步.  , doi: 10.7498/aps.61.038901
    [9] 季颖, 毕勤胜. 高维广义蔡氏电路中的快慢动力学行为及其分岔分析.  , doi: 10.7498/aps.61.010202
    [10] 朱廷祥, 吴晔, 肖井华. 一种有效的提高复杂网络同步能力的自适应方法.  , doi: 10.7498/aps.61.040502
    [11] 侯小娟, 云国宏, 白宇浩, 白那日苏, 周文平. 量子自旋波本征值及易轴型各向异性对其的影响.  , doi: 10.7498/aps.60.056805
    [12] 李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩. 光纤光栅法布里-珀罗腔的V-I传输矩阵法研究.  , doi: 10.7498/aps.59.8615
    [13] 曹京晓, 胡 巍, 罗海陆, 杨湘波. 傍轴光束在单轴左手介质中传输的矢量性质.  , doi: 10.7498/aps.56.2131
    [14] 姜永远, 张永强, 时红艳, 侯春风, 孙秀冬. 单轴各向异性左手介质表面的Goos-H?nchen位移.  , doi: 10.7498/aps.56.798
    [15] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究.  , doi: 10.7498/aps.54.955
    [16] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构.  , doi: 10.7498/aps.50.2172
    [17] 郑宏兴, 葛德彪. 广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射.  , doi: 10.7498/aps.49.1702
    [18] 赖建文, 周世平, 李国辉, 徐得名. 非重正交的李雅普诺夫指数谱的计算方法.  , doi: 10.7498/aps.49.2328
    [19] 王永强, 李振亚. 具有单轴各向异性场的无规横向伊辛模型(S=1)的临界行为.  , doi: 10.7498/aps.44.811
    [20] 沈文忠, 李振亚. 具有单轴各向异性的磁性超晶格中的自旋波.  , doi: 10.7498/aps.41.1374
计量
  • 文章访问数:  95
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-13

/

返回文章
返回
Baidu
map