-
形状记忆合金在工程应用中的难点主要来自于系统在温度和外载荷作用下产生的复杂全局动力学行为. 本文以形状记忆合金薄板动力系统为研究对象, 分析在温度和激励振幅两个控制参数作用下系统的全局动力学. 通过全局分岔图, 可以观测到系统会发生复杂的激变现象, 然后利用复合胞坐标系方法, 获取系统的吸引子、吸引域、鞍和域边界等信息, 展现系统的全局演变过程. 研究发现, 系统随着振幅和温度变化会呈现复杂的全局结构, 并发生一系列的边界激变、合并激变现象, 同时多次发生分形-Wada, Wada-Wada, Wada-分形等域边界突变. 通过对指定区域细化, 可以清晰地显示域边界的分形特征. 研究结果对于如何通过调控温度与外载荷强度, 使形状记忆合金薄板在系统中发挥最佳性能具有理论指导意义.The unique global properties of shape memory alloy are mainly derived from the martensite phase transition and its inverse, which result from the change of temperature and external load. In this paper, the global characteristics of shape memory alloy thin plate system are analyzed with the temperature and harmonic excitation amplitude as control parameters. Based on the method of Poincare map, the complex crisis phenomenon of the system including the sudden change in number, size and type of attractors can be observed through the global multivalued bifurcation diagram. However, the specific crisis type is not clear, it is necessary to be analyzed from the global viewpoint. By computing the global diagram with the composite cell coordinate system method which constructs a composite cell state space by multistage division of the continuous phase space, the attractors, saddles and basins of attraction of the system can be obtained more accurately. The vivid evolutionary processes of the crisis phenomena of the system are illustrated, and it can be found that the system presents a complex global structure with amplitude and temperature changing. There exist two kinds of crises: one is the boundary crisis resulting from the collision between a chaotic/periodic attractor and a chaotic saddle within the basin boundary, which causes the attractor to vanish, and the other is the merging crisis caused by the collision of two or more attractors with the chaotic saddle within the basin boundary where a new chaotic attractor appears. When multiple attractors coexist in the system, the basin boundary may be smooth or fractal, and for any point at boundary, its small open neighborhood always has a nonempty intersection with three or more basins, which is known as Wada basin boundary. It is difficult to predict the dynamic behavior of the system accurately due to the fractal, the Wada-Wada, Wada-fractal and fractal-Wada basin boundary metamorphoses which can be observed along with the variation of temperature and amplitude through the composite cell coordinate system method, which owns a unique advantage in depicting basin boundary. Furthermore, the Wada property is displayed more clearly by refining specified region. The results of this paper provide a theoretical analysis tool for adjusting the dynamic response of shape memory alloy thin plate system and optimizing the deformation and vibration control of mechanical equipment through controlling temperature and excitation intensity.
-
Keywords:
- shape memory alloy /
- global dynamics /
- crisis /
- fractal basin boundary
[1] Yuan B, Zhu M, Chung C 2018 Materials 11 1716Google Scholar
[2] Hartl D J, Lagoudas D C 2007 Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 221 535
[3] Lee J, Jin M, Ahn K K 2013 Mechatronics 23 310Google Scholar
[4] Jani J M, Leary M, Subic A, Gibson M A 2014 Mater. Des. 56 1078Google Scholar
[5] Song G, Ma N, Li H N 2006 Eng. Struct. 28 1266Google Scholar
[6] Bernardini D, Rega G 2011 Int. J. Bifurcation Chaos 21 2769Google Scholar
[7] Paula A S, Savi M A, Lagoudas D C 2012 J. Braz. Soc. Mech. Sci. Eng. 34 401Google Scholar
[8] Sado D, Pietrzakowski M 2010 Int. J. Non-Linear Mech. 45 859Google Scholar
[9] Hashemi S M T, Khadem S E 2006 Int. J. Mech. Sci. 48 44Google Scholar
[10] Savi M A 2015 Int. J. Non-Linear Mech. 70 2Google Scholar
[11] Han Q, Xu W, Yue X 2014 Int. J. Bifurcation Chaos 24 1450051Google Scholar
[12] Grebogi C, Ott E, Yorke J A 1982 Phys. Rev. Lett. 48 1507Google Scholar
[13] Grebogi C, Ott E, Yorke J A 1983 Physica D 7 181Google Scholar
[14] Chian A C L, Borotto F A, Rempel E L, Rogers C 2005 Chaos Solitons Fractals 24 869Google Scholar
[15] Yue X, Xu W, Zhang Y 2012 Nonlinear Dyn. 69 437Google Scholar
[16] 刘莉, 徐伟, 岳晓乐, 韩群 2013 62 200501Google Scholar
Liu L, Xu W, Yue X L, Han Q 2013 Acta Phys. Sin. 62 200501Google Scholar
[17] 刘晓君, 洪灵, 江俊 2016 65 180502Google Scholar
Liu X J, Hong L, Jiang J 2016 Acta Phys. Sin. 65 180502Google Scholar
[18] Yue X, Xu W, Wang L 2013 Commun. Nonlinear Sci. Numer. Simul. 18 3567Google Scholar
[19] Zhang Y 2013 Phys. Lett. A 377 1269Google Scholar
[20] Hsu C S 1992 Int. J. Bifurcation Chaos 2 727Google Scholar
[21] Hsu C S 1995 Int. J. Bifurcation Chaos 5 1085Google Scholar
[22] Tongue B H 1987 Physica D 28 401Google Scholar
[23] Falk F 1980 Acta Metall. Sin. 28 1773Google Scholar
[24] Machado L G, Savi M A, Pacheco P M C L 2004 Shock Vib. 11 67Google Scholar
[25] 黄志华, 刘平, 杜长城, 李映辉 2009 力学季刊 30 71Google Scholar
Huang Z H, Liu P, Du C C, Li Y H 2009 Chin. Quarterly Mech. 30 71Google Scholar
-
-
[1] Yuan B, Zhu M, Chung C 2018 Materials 11 1716Google Scholar
[2] Hartl D J, Lagoudas D C 2007 Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 221 535
[3] Lee J, Jin M, Ahn K K 2013 Mechatronics 23 310Google Scholar
[4] Jani J M, Leary M, Subic A, Gibson M A 2014 Mater. Des. 56 1078Google Scholar
[5] Song G, Ma N, Li H N 2006 Eng. Struct. 28 1266Google Scholar
[6] Bernardini D, Rega G 2011 Int. J. Bifurcation Chaos 21 2769Google Scholar
[7] Paula A S, Savi M A, Lagoudas D C 2012 J. Braz. Soc. Mech. Sci. Eng. 34 401Google Scholar
[8] Sado D, Pietrzakowski M 2010 Int. J. Non-Linear Mech. 45 859Google Scholar
[9] Hashemi S M T, Khadem S E 2006 Int. J. Mech. Sci. 48 44Google Scholar
[10] Savi M A 2015 Int. J. Non-Linear Mech. 70 2Google Scholar
[11] Han Q, Xu W, Yue X 2014 Int. J. Bifurcation Chaos 24 1450051Google Scholar
[12] Grebogi C, Ott E, Yorke J A 1982 Phys. Rev. Lett. 48 1507Google Scholar
[13] Grebogi C, Ott E, Yorke J A 1983 Physica D 7 181Google Scholar
[14] Chian A C L, Borotto F A, Rempel E L, Rogers C 2005 Chaos Solitons Fractals 24 869Google Scholar
[15] Yue X, Xu W, Zhang Y 2012 Nonlinear Dyn. 69 437Google Scholar
[16] 刘莉, 徐伟, 岳晓乐, 韩群 2013 62 200501Google Scholar
Liu L, Xu W, Yue X L, Han Q 2013 Acta Phys. Sin. 62 200501Google Scholar
[17] 刘晓君, 洪灵, 江俊 2016 65 180502Google Scholar
Liu X J, Hong L, Jiang J 2016 Acta Phys. Sin. 65 180502Google Scholar
[18] Yue X, Xu W, Wang L 2013 Commun. Nonlinear Sci. Numer. Simul. 18 3567Google Scholar
[19] Zhang Y 2013 Phys. Lett. A 377 1269Google Scholar
[20] Hsu C S 1992 Int. J. Bifurcation Chaos 2 727Google Scholar
[21] Hsu C S 1995 Int. J. Bifurcation Chaos 5 1085Google Scholar
[22] Tongue B H 1987 Physica D 28 401Google Scholar
[23] Falk F 1980 Acta Metall. Sin. 28 1773Google Scholar
[24] Machado L G, Savi M A, Pacheco P M C L 2004 Shock Vib. 11 67Google Scholar
[25] 黄志华, 刘平, 杜长城, 李映辉 2009 力学季刊 30 71Google Scholar
Huang Z H, Liu P, Du C C, Li Y H 2009 Chin. Quarterly Mech. 30 71Google Scholar
计量
- 文章访问数: 7026
- PDF下载量: 67
- 被引次数: 0