[1] |
Peng Hao, Ren Rui-Bin, Zhong Yang-Fan, Yu Tao. Stochastic resonance of fractional-order coupled system excited by trichotomous noise. Acta Physica Sinica,
2022, 71(3): 030502.
doi: 10.7498/aps.71.20211272
|
[2] |
. Research on Stochastic Resonance of Fractional-Order Coupled System Excited by Trichotomous Noise. Acta Physica Sinica,
2021, (): .
doi: 10.7498/aps.70.20211272
|
[3] |
Zheng Guang-Chao, Liu Chong-Xin, Wang Yan. Dynamic analysis and finite time synchronization of a fractional-order chaotic system with hidden attractors. Acta Physica Sinica,
2018, 67(5): 050502.
doi: 10.7498/aps.67.20172354
|
[4] |
Yang Jian-Hua, Ma Qiang, Wu Cheng-Jin, Liu Hou-Guang. A periodic vibrational resonance in the fractional-order bistable system. Acta Physica Sinica,
2018, 67(5): 054501.
doi: 10.7498/aps.67.20172046
|
[5] |
Xue Kai-Jia, Wang Cong-Qing. Sliding mode control of fractional order chaotic system based on an online error correction adaptive SVR. Acta Physica Sinica,
2015, 64(7): 070502.
doi: 10.7498/aps.64.070502
|
[6] |
Li Rui, Zhang Guang-Jun, Yao Hong, Zhu Tao, Zhang Zhi-Hao. Generalized dislocated lag projective synchronization of fractional chaotic systems with fully uncertain parameters. Acta Physica Sinica,
2014, 63(23): 230501.
doi: 10.7498/aps.63.230501
|
[7] |
Zhang Lu, Xie Tian-Ting, Luo Mao-Kang. Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals. Acta Physica Sinica,
2014, 63(1): 010506.
doi: 10.7498/aps.63.010506
|
[8] |
Tu Zhe, Lai Li, Luo Mao-Kang. Directional transport of fractional asymmetric coupling system in symmetric periodic potential. Acta Physica Sinica,
2014, 63(12): 120503.
doi: 10.7498/aps.63.120503
|
[9] |
Jia Hong-Yan, Chen Zeng-Qiang, Xue Wei. Analysis and circuit implementation for the fractional-order Lorenz system. Acta Physica Sinica,
2013, 62(14): 140503.
doi: 10.7498/aps.62.140503
|
[10] |
Li Li-Xiang, Peng Hai-Peng, Luo Qun, Yang Yi-Xian, Liu Zhe. Problem and analysis of stability decidable theory for a class of fractional order nonlinear system. Acta Physica Sinica,
2013, 62(2): 020502.
doi: 10.7498/aps.62.020502
|
[11] |
Hu Jian-Bing, Zhao Ling-Dong. Stability theorem and control of fractional systems. Acta Physica Sinica,
2013, 62(24): 240504.
doi: 10.7498/aps.62.240504
|
[12] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica,
2012, 61(6): 060503.
doi: 10.7498/aps.61.060503
|
[13] |
Xin Bao-Gui, Chen Tong, Liu Yan-Qin. Complexity evolvement of a chaotic fractional-orderfinancial system. Acta Physica Sinica,
2011, 60(4): 048901.
doi: 10.7498/aps.60.048901
|
[14] |
Luo Song-Jiang, Qiu Shui-Sheng, Luo Kai-Qing. Research on the stability of complexity of chaos-based pseudorandom sequence. Acta Physica Sinica,
2009, 58(9): 6045-6049.
doi: 10.7498/aps.58.6045
|
[15] |
Yu Si-Yao, Guo Shu-Xu, Gao Feng-Li. Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification. Acta Physica Sinica,
2009, 58(8): 5214-5217.
doi: 10.7498/aps.58.5214
|
[16] |
Zhao Pin-Dong, Zhang Xiao-Dan. Study on a class of chaotic systems with fractional order. Acta Physica Sinica,
2008, 57(5): 2791-2798.
doi: 10.7498/aps.57.2791
|
[17] |
Zhang Cheng-Fen, Gao Jin-Feng, Xu Lei. Chaos in fractional-order Liu system and a fractional-order unified system and the synchronization between them. Acta Physica Sinica,
2007, 56(9): 5124-5130.
doi: 10.7498/aps.56.5124
|
[18] |
Tao Chao-Hai, Lu Jun-An. Speed feedback synchronization of a chaotic system. Acta Physica Sinica,
2005, 54(11): 5058-5061.
doi: 10.7498/aps.54.5058
|
[19] |
Guan Xin-Ping, Fan Zheng-Ping, Zhang Qun-Liang, Wang Yi-Qun. . Acta Physica Sinica,
2002, 51(10): 2216-2220.
doi: 10.7498/aps.51.2216
|
[20] |
LIU HAI-FENG, ZHAO YAN-YAN, DAI ZHENG-HUA, GONG XIN, YU ZUN-HONG. CALCULATION OF THE LARGEST LYAPUNOV EXPONENT IN THE DISCRETE DYNAMICAL SYSTEM WITH WAVELET ANALYSIS. Acta Physica Sinica,
2001, 50(12): 2311-2317.
doi: 10.7498/aps.50.2311
|