搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构造Birkhoff表示的广义Hojman方法

崔金超 赵喆 郭永新

引用本文:
Citation:

构造Birkhoff表示的广义Hojman方法

崔金超, 赵喆, 郭永新

General Hojman's method for the construction of Birkhoffian representation

Cui Jin-Chao, Zhao Zhe, Guo Yong-Xin
PDF
导出引用
  • 研究第一积分、Hojman方法及Birkhoff方程之间的内在联系. Hojman方法构造的Birkhoff函数(组)满足的一个特定关系, 对此关系加以分析得到更为一般的广义Hojman方法. 再将此关系与Birkhoff方程相结合, 导出Birkhoff系统Hojman意义下的循环积分. 举例说明结论的应用.
    We have investigated the internal relation among the first integral, Hojman's method and Birkhoff's equations. There is a special equivalent relationship between Birkhoffian and Birkhoffian functions constructed by Hojman's method, and from this we can derive a more general form of Hojman's method. Then, combining the special equivalent relationship and Birkhoff's equations, we can derive the cyclic integral in Birkhoffian sense. An example is given to illustrate the application of the results.
    • 基金项目: 国家自然科学基金(批准号:10932002,11172120,11202090,10972127)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10932002, 11172120, 11202090, 10972127).
    [1]

    Birkhoff G D 1927 Dynamical systems (Providence R I: AMS College Publ)

    [2]

    Santilli R M 1983 Foundations of theoretical mechanics I!I (New York: Springer-Verlag)

    [3]

    Hojman S, Urrutia L F 1981 J. Math. Phys. 22 1896

    [4]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff系统动力学 (北京: 北京理工大学出版社)]

    [5]

    Guo Y X, Liu C, Liu S X 2010 Commun. Math. 18 21

    [6]

    Mei F X 2009 Inverse Problems of Dynamics (Beijing: National Defense Industry Press) (in Chinese) [梅凤翔 2009 动力学逆问题 (北京: 国防工业出版社)]

    [7]

    Ding G T 2008 Acta. Phys. Sin. 57 7415 (in Chinese) [丁光涛 2008 57 7415]

    [8]

    Guo Y X, Liu C, Liu S X, Chang P 2009 Sci. Chin. E 52 761

    [9]

    Guo Y X, Liu S X, Liu C 2009 Phys. Lett. A 373 3915

    [10]

    Shang M, Mei F X 2009 Chin. Phys. B 18 3155

    [11]

    Zhang Y 2010 Chin. Phys. B 19 080301

    [12]

    Chen X W 2002 Global Analysis of Birkhoffian System (Henan: Henan University Press) (in Chinese) [陈向炜 2002 Birkhoff系统的全局分析(河南大学出版社)]

    [13]

    Mei F X 1993 Sci. Chin. A 36 1456

    [14]

    Wu H B, Mei F X 2011 Chin. Phys. B 20 104501

    [15]

    Luo S K, Cai J L 2003 Chin. Phys. 12 357

    [16]

    Zheng S W, Jia L Q 2006 Acta. Phys. Sin. 55 5590 (in Chinese) [郑世旺, 贾利群 2006 55 5590]

    [17]

    Ding G T 2010 Acta. Phys. Sin. 59 3643 (in Chinese) [丁光涛 2010 59 3643]

    [18]

    Zhang H B, Chen L Q, Gu S L, Liu C Z 2007 Chin. Phys. 16 582

    [19]

    Fu J L, Chen L Q, Xue Y 2003 Acta. Phys. Sin. 52 256 (in Chinese) [傅景礼, 陈立群, 薛纭 2003 52 256]

    [20]

    Liu S X, Liu C, Guo Y X 2011 Chin. Phys. B 20 034501

    [21]

    Liu S X, Liu C, Guo Y X 2011 Acta. Phys. Sin. 60 064501 (in Chinese) [刘世兴, 刘畅, 郭永新 2011 60 064501]

    [22]

    Mei F X, Cui J C 2011 J. Beijing Ins. Tech. 20 285

    [23]

    Li Y M, Mei F X 2010 Chin. Phys. B 19 080302

    [24]

    Liu C, Liu S X, Guo Y X 2011 Sci. Chin.: Tech. Sci. 54 2100

    [25]

    Cui J C, Mei F X 2010 J. Dyn. Control 8 297 (in Chinese) [崔金超, 梅凤翔 2010 动力学与控制学报 8 297]

  • [1]

    Birkhoff G D 1927 Dynamical systems (Providence R I: AMS College Publ)

    [2]

    Santilli R M 1983 Foundations of theoretical mechanics I!I (New York: Springer-Verlag)

    [3]

    Hojman S, Urrutia L F 1981 J. Math. Phys. 22 1896

    [4]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff系统动力学 (北京: 北京理工大学出版社)]

    [5]

    Guo Y X, Liu C, Liu S X 2010 Commun. Math. 18 21

    [6]

    Mei F X 2009 Inverse Problems of Dynamics (Beijing: National Defense Industry Press) (in Chinese) [梅凤翔 2009 动力学逆问题 (北京: 国防工业出版社)]

    [7]

    Ding G T 2008 Acta. Phys. Sin. 57 7415 (in Chinese) [丁光涛 2008 57 7415]

    [8]

    Guo Y X, Liu C, Liu S X, Chang P 2009 Sci. Chin. E 52 761

    [9]

    Guo Y X, Liu S X, Liu C 2009 Phys. Lett. A 373 3915

    [10]

    Shang M, Mei F X 2009 Chin. Phys. B 18 3155

    [11]

    Zhang Y 2010 Chin. Phys. B 19 080301

    [12]

    Chen X W 2002 Global Analysis of Birkhoffian System (Henan: Henan University Press) (in Chinese) [陈向炜 2002 Birkhoff系统的全局分析(河南大学出版社)]

    [13]

    Mei F X 1993 Sci. Chin. A 36 1456

    [14]

    Wu H B, Mei F X 2011 Chin. Phys. B 20 104501

    [15]

    Luo S K, Cai J L 2003 Chin. Phys. 12 357

    [16]

    Zheng S W, Jia L Q 2006 Acta. Phys. Sin. 55 5590 (in Chinese) [郑世旺, 贾利群 2006 55 5590]

    [17]

    Ding G T 2010 Acta. Phys. Sin. 59 3643 (in Chinese) [丁光涛 2010 59 3643]

    [18]

    Zhang H B, Chen L Q, Gu S L, Liu C Z 2007 Chin. Phys. 16 582

    [19]

    Fu J L, Chen L Q, Xue Y 2003 Acta. Phys. Sin. 52 256 (in Chinese) [傅景礼, 陈立群, 薛纭 2003 52 256]

    [20]

    Liu S X, Liu C, Guo Y X 2011 Chin. Phys. B 20 034501

    [21]

    Liu S X, Liu C, Guo Y X 2011 Acta. Phys. Sin. 60 064501 (in Chinese) [刘世兴, 刘畅, 郭永新 2011 60 064501]

    [22]

    Mei F X, Cui J C 2011 J. Beijing Ins. Tech. 20 285

    [23]

    Li Y M, Mei F X 2010 Chin. Phys. B 19 080302

    [24]

    Liu C, Liu S X, Guo Y X 2011 Sci. Chin.: Tech. Sci. 54 2100

    [25]

    Cui J C, Mei F X 2010 J. Dyn. Control 8 297 (in Chinese) [崔金超, 梅凤翔 2010 动力学与控制学报 8 297]

  • [1] 张毅. 时间尺度上非迁移Birkhoff系统的Mei对称性定理.  , 2021, 70(24): 244501. doi: 10.7498/aps.70.20210372
    [2] 孔新雷, 吴惠彬. Birkhoff系统的离散最优控制及其在航天器交会对接中的应用.  , 2017, 66(8): 084501. doi: 10.7498/aps.66.084501
    [3] 崔金超, 廖翠萃, 赵喆, 刘世兴. 一种求解Birkhoff动力学函数和Lagrange函数的简化方法.  , 2016, 65(18): 180201. doi: 10.7498/aps.65.180201
    [4] 宋端. 构造Birkhoff动力学函数的Santilli第二方法的简化.  , 2014, 63(14): 144501. doi: 10.7498/aps.63.144501
    [5] 葛伟宽, 张毅, 楼智美. 一类广义Birkhoff系统的无限小正则变换与积分.  , 2012, 61(14): 140204. doi: 10.7498/aps.61.140204
    [6] 丁光涛. 构造准正则变换的方法.  , 2011, 60(4): 044502. doi: 10.7498/aps.60.044502
    [7] 丁光涛. 构造Birkhoff表示的Hojman方法与Birkhoff对称性.  , 2010, 59(6): 3643-3647. doi: 10.7498/aps.59.3643
    [8] 丁光涛. 规范变换对Birkhoff系统对称性的影响.  , 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [9] 张 毅. 事件空间中Birkhoff系统的Noether理论.  , 2008, 57(5): 2643-2648. doi: 10.7498/aps.57.2643
    [10] 张 毅. 事件空间中Birkhoff系统的参数方程及其第一积分.  , 2008, 57(5): 2649-2653. doi: 10.7498/aps.57.2649
    [11] 张 毅. Birkhoff系统约化的Routh方法.  , 2008, 57(9): 5374-5377. doi: 10.7498/aps.57.5374
    [12] 葛伟宽, 梅凤翔. Birkhoff系统的时间积分定理.  , 2007, 56(5): 2479-2481. doi: 10.7498/aps.56.2479
    [13] 张鹏玉, 方建会. 变质量Birkhoff系统的Lie对称性和非Noether守恒量.  , 2006, 55(8): 3813-3816. doi: 10.7498/aps.55.3813
    [14] 张 毅. Birkhoff系统的一类新型绝热不变量.  , 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [15] 郑世旺, 贾利群. Birkhoff系统的局部能量积分.  , 2006, 55(11): 5590-5593. doi: 10.7498/aps.55.5590
    [16] 张 毅, 范存新, 葛伟宽. Birkhoff系统的一类新型守恒量.  , 2004, 53(11): 3644-3647. doi: 10.7498/aps.53.3644
    [17] 张 毅. Birkhoff系统的Hojman定理的几何基础.  , 2004, 53(12): 4026-4028. doi: 10.7498/aps.53.4026
    [18] 傅景礼, 陈立群, 薛纭, 罗绍凯. 相对论Birkhoff系统的平衡稳定性.  , 2002, 51(12): 2683-2689. doi: 10.7498/aps.51.2683
    [19] 罗绍凯, 卢一兵, 周强, 王应德, 欧阳实. 转动相对论Birkhoff约束系统积分不变量的构造.  , 2002, 51(9): 1913-1917. doi: 10.7498/aps.51.1913
    [20] 傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民. 相对论Birkhoff系统动力学研究.  , 2001, 50(12): 2289-2295. doi: 10.7498/aps.50.2289
计量
  • 文章访问数:  5683
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-03
  • 修回日期:  2013-01-08
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map