搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

El-Nabulsi动力学模型下Birkhoff系统Noether对称性的摄动与绝热不变量

陈菊 张毅

引用本文:
Citation:

El-Nabulsi动力学模型下Birkhoff系统Noether对称性的摄动与绝热不变量

陈菊, 张毅

Perturbation to Noether symmetries and adiabatic invariants for Birkhoffian systems based on El-Nabulsi dynamical models

Chen Ju, Zhang Yi
PDF
导出引用
  • 基于El-Nabulsi动力学模型,研究了小扰动作用下Birkhoff系统Noether对称性的摄动与绝热不变量问题. 首先,将El-Nabulsi提出的在分数阶微积分框架下基于Riemann-Liouville分数阶积分的非保守系统动力学模型拓展到Birkhoff系统,建立El-Nabulsi-Birkhoff方程;其次,基于在无限小变换下El-Nabulsi-Pfaff作用量的不变性,给出Noether准对称性的定义和判据,得到了Noether对称性导致的精确不变量;再次,引入力学系统的绝热不变量概念,研究El-Nabulsi动力学模型下受小扰动作用的Birkhoff系统Noether对称性的摄动与绝热不变量之间的关系,得到了对称性摄动导致的绝热不变量的条件及其形式. 作为特例,给出了El-Nabulsi动力学模型下相空间中非保守系统和经典Birkhoff系统的Noether对称性的摄动与绝热不变量. 以著名的Hojman-Urrutia问题为例,研究其在El-Nabulsi动力学模型下的Noether对称性,得到了相应的精确不变量和绝热不变量.
    In this paper, we study the problem of perturbation to Noether symmetries and adiabatic invariants for a Birkhoffian system under small disturbance based on the El-Nabulsi dynamical model. First, the dynamical model presented by El-Nabulsi, which is based on the Riemann-Liouville fractional integral under the framework of the fractional calculus, is extended to the Birkhoffian system, and El-Nabulsi-Birkhoff equations for the Birkhoffian system are established. Then, by using the invariance of the El-Nabulsi-Pfaff action under the infinitesimal transformations, the definition and criterion of the Noether quasi-symmetric transformation are given, and the exact invariant caused directly by the Noether symmetry is obtained. Furthermore, by introducing the concept of high-order adiabatic invariant of a mechanical system, the relationship between the perturbation to the Noether symmetry and the adiabatic invariant after the action of small disturbance is studied, the condition that the perturbation of symmetry leads to the adiabatic invariant and its formulation are presented. As a special case, the perturbation to Noether symmetries and corresponding adiabatic invariants mechanics of non-conservative systems in phase space under El-Nabulsi models and classical Birkhoffian systems are discussed. At the end of the paper, taking the well-known Hojman-Urrutia problem for example, its Noether symmetries under the El-Nabulsi dynamical model is investigated and corresponding exact invariants and adiabatic invariants are presented.
    • 基金项目: 国家自然科学基金(批准号:10972151,11272227)、江苏省普通高等学校研究生科研创新计划(批准号:CXLX13-855)和苏州科技学院研究生科研创新计划(批准号:SKCX13S-050)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972151, 11272227), the Scientific Research and Innovation Program for the Graduate Students in Institution of Higher Education of Jiangsu Province, China (Grant No. CXLX13-855), and the Scientific Research and Innovation Program for the Graduate Students of Suzhou University of Science and Technology, China (Grant No. SKCX13S-050).
    [1]

    Birkhoff G D 1927 Dynamical Systems (Providence: AMS College Publication) pp55-58, 89-96

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics (II) (New York: Springer Verlag) pp30-42

    [3]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp37-95 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 BIRKHOFF 系统动力学 (北京: 北京理工大学出版社) 第37–95页]

    [4]

    Galiullan A S 1989 Analytical Dynamics (Moscow: Nauka) pp249-263 (in Russian)

    [5]

    Mei F X 2013 Dynamics of Generalized Birkhoffian System (Beijing: Science Press) pp1-29 (in Chinese) [梅凤翔 2013 广义Birkhoff系统动力学 (北京: 科学出版社) 第1–29页]

    [6]

    Mei F X 1996 Mech. Eng. 18 1 (in Chinese) [梅凤翔 1996 力学与实践 18 1]

    [7]

    Mei F X 1993 Sci. China A 36 1456

    [8]

    Mei F X 2001 Int. J. Non-Linear Mech. 36 817

    [9]

    Guo Y X, Luo S K, Shang M, Mei F X 2001 Rep. Math. Phys. 47 313

    [10]

    Zheng G H, Chen X W, Mei F X 2001 J. Beijing Inst. Technol. 10 17

    [11]

    Zhang Y 2010 Chin. Phys. B 19 080301

    [12]

    Wu H B, Mei F X 2011 Chin. Phys. B 20 104501

    [13]

    Jiang W, Li L, Li Z J, Luo S K 2012 Nonlinear Dyn. 67 1075

    [14]

    Li Z J, Luo S K 2012 Nonlinear Dyn. 70 1117

    [15]

    Zhang Y, Mei F X 2004 Acta Phys. Sin. 53 2419 (in Chinese) [张毅, 梅凤翔 2004 53 2419]

    [16]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) pp200-226, 459-475 (in Chinese)[梅凤翔 1999 约束力学系统Lie群和Lie代数的应用 (北京: 科学出版社) 第200–226, 459–475页]

    [17]

    Fu J L, Chen L Q 2004 Phys. Lett. A 324 95

    [18]

    Zhang Y 2006 Acta Phys. Sin. 55 3833 (in Chinese) [张毅 2006 55 3833]

    [19]

    Zhang H B 2001 Acta Phys. Sin. 50 1837 (in Chinese) [张宏彬 2001 50 1837]

    [20]

    Luo S k, Guo Y X 2007 Commun. Theor. Phys. (Beijing) 47 25

    [21]

    El-Nabulsi A R 2005 Fizika A 14 289

    [22]

    El-Nabuls A R 2007 Math. Methods Appl. Sci. 30 1931

    [23]

    El-Nabulsi A R, Torres D F M 2008 J. Math. Phys. 49 053521

    [24]

    El-Nabulsi A R 2009 Chaos Solitons Fract. 42 52

    [25]

    El-Nabulsi A R 2013 Qual. Theory Dyn. Syst. 12 273

    [26]

    Zhang Y 2013 Acta Sci. Nat. Univ. Sunyatseni 52 45 (in Chinese) [张毅 2013 中山大学学报 (自然科学版) 52 45]

    [27]

    Zhang Y 2013 Acta Phys. Sin. 62 164501 (in Chinese) [张毅 2013 62 164501]

    [28]

    Long Z X, Zhang Y 2014 Acta Mech. 225 77

    [29]

    Long Z X, Zhang Y 2014 Int. J. Theor. Phys. 53 841

    [30]

    Ding J F, Zhang Y 2014 J. Univ. Sci. Technol. Suzhou (Nat. Sci. Ed.) 31 1 (in Chinese) [丁金凤, 张毅 2014 苏州科技学院学报 (自然科学版) 31 1]

    [31]

    Zhang Y, Zhou Y 2013 Nonlinear Dyn. 73 783

    [32]

    Hojman S, Urrutia L E 1981 J. Math. Phys. 22 1896

    [33]

    Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) p164 (in Chinese) [赵跃宇, 梅凤翔 1999 力学系统的对称性与守恒量 (北京: 科学出版社) 第164页]

    [34]

    Zhao Y Y, Mei F X 1996 Acta Mech. Sin. 28 207 (in Chinese) [赵跃宇, 梅凤翔 1996 力学学报 28 207]

  • [1]

    Birkhoff G D 1927 Dynamical Systems (Providence: AMS College Publication) pp55-58, 89-96

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics (II) (New York: Springer Verlag) pp30-42

    [3]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp37-95 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 BIRKHOFF 系统动力学 (北京: 北京理工大学出版社) 第37–95页]

    [4]

    Galiullan A S 1989 Analytical Dynamics (Moscow: Nauka) pp249-263 (in Russian)

    [5]

    Mei F X 2013 Dynamics of Generalized Birkhoffian System (Beijing: Science Press) pp1-29 (in Chinese) [梅凤翔 2013 广义Birkhoff系统动力学 (北京: 科学出版社) 第1–29页]

    [6]

    Mei F X 1996 Mech. Eng. 18 1 (in Chinese) [梅凤翔 1996 力学与实践 18 1]

    [7]

    Mei F X 1993 Sci. China A 36 1456

    [8]

    Mei F X 2001 Int. J. Non-Linear Mech. 36 817

    [9]

    Guo Y X, Luo S K, Shang M, Mei F X 2001 Rep. Math. Phys. 47 313

    [10]

    Zheng G H, Chen X W, Mei F X 2001 J. Beijing Inst. Technol. 10 17

    [11]

    Zhang Y 2010 Chin. Phys. B 19 080301

    [12]

    Wu H B, Mei F X 2011 Chin. Phys. B 20 104501

    [13]

    Jiang W, Li L, Li Z J, Luo S K 2012 Nonlinear Dyn. 67 1075

    [14]

    Li Z J, Luo S K 2012 Nonlinear Dyn. 70 1117

    [15]

    Zhang Y, Mei F X 2004 Acta Phys. Sin. 53 2419 (in Chinese) [张毅, 梅凤翔 2004 53 2419]

    [16]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) pp200-226, 459-475 (in Chinese)[梅凤翔 1999 约束力学系统Lie群和Lie代数的应用 (北京: 科学出版社) 第200–226, 459–475页]

    [17]

    Fu J L, Chen L Q 2004 Phys. Lett. A 324 95

    [18]

    Zhang Y 2006 Acta Phys. Sin. 55 3833 (in Chinese) [张毅 2006 55 3833]

    [19]

    Zhang H B 2001 Acta Phys. Sin. 50 1837 (in Chinese) [张宏彬 2001 50 1837]

    [20]

    Luo S k, Guo Y X 2007 Commun. Theor. Phys. (Beijing) 47 25

    [21]

    El-Nabulsi A R 2005 Fizika A 14 289

    [22]

    El-Nabuls A R 2007 Math. Methods Appl. Sci. 30 1931

    [23]

    El-Nabulsi A R, Torres D F M 2008 J. Math. Phys. 49 053521

    [24]

    El-Nabulsi A R 2009 Chaos Solitons Fract. 42 52

    [25]

    El-Nabulsi A R 2013 Qual. Theory Dyn. Syst. 12 273

    [26]

    Zhang Y 2013 Acta Sci. Nat. Univ. Sunyatseni 52 45 (in Chinese) [张毅 2013 中山大学学报 (自然科学版) 52 45]

    [27]

    Zhang Y 2013 Acta Phys. Sin. 62 164501 (in Chinese) [张毅 2013 62 164501]

    [28]

    Long Z X, Zhang Y 2014 Acta Mech. 225 77

    [29]

    Long Z X, Zhang Y 2014 Int. J. Theor. Phys. 53 841

    [30]

    Ding J F, Zhang Y 2014 J. Univ. Sci. Technol. Suzhou (Nat. Sci. Ed.) 31 1 (in Chinese) [丁金凤, 张毅 2014 苏州科技学院学报 (自然科学版) 31 1]

    [31]

    Zhang Y, Zhou Y 2013 Nonlinear Dyn. 73 783

    [32]

    Hojman S, Urrutia L E 1981 J. Math. Phys. 22 1896

    [33]

    Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) p164 (in Chinese) [赵跃宇, 梅凤翔 1999 力学系统的对称性与守恒量 (北京: 科学出版社) 第164页]

    [34]

    Zhao Y Y, Mei F X 1996 Acta Mech. Sin. 28 207 (in Chinese) [赵跃宇, 梅凤翔 1996 力学学报 28 207]

  • [1] 张毅. 时间尺度上非迁移Birkhoff系统的Mei对称性定理.  , 2021, 70(24): 244501. doi: 10.7498/aps.70.20210372
    [2] 崔金超, 廖翠萃, 赵喆, 刘世兴. 一种求解Birkhoff动力学函数和Lagrange函数的简化方法.  , 2016, 65(18): 180201. doi: 10.7498/aps.65.180201
    [3] 陈菊, 张毅. El-Nabulsi动力学模型下非Chetaev型非完整系统的精确不变量与绝热不变量.  , 2015, 64(3): 034502. doi: 10.7498/aps.64.034502
    [4] 张毅. 非保守动力学系统Noether对称性的摄动与绝热不变量.  , 2013, 62(16): 164501. doi: 10.7498/aps.62.164501
    [5] 丁光涛. 构造Birkhoff表示的Hojman方法与Birkhoff对称性.  , 2010, 59(6): 3643-3647. doi: 10.7498/aps.59.3643
    [6] 丁光涛. 规范变换对Birkhoff系统对称性的影响.  , 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [7] 张 毅. 事件空间中Birkhoff系统的Noether理论.  , 2008, 57(5): 2643-2648. doi: 10.7498/aps.57.2643
    [8] 荆宏星, 李元成, 夏丽莉. 变质量单面完整约束系统Lie对称性的摄动与广义Hojman型绝热不变量.  , 2007, 56(6): 3043-3049. doi: 10.7498/aps.56.3043
    [9] 张 毅. 事件空间中完整系统的Lie对称性与绝热不变量.  , 2007, 56(6): 3054-3059. doi: 10.7498/aps.56.3054
    [10] 夏丽莉, 李元成. 相空间中非完整可控力学系统的对称性摄动与绝热不变量.  , 2007, 56(11): 6183-6187. doi: 10.7498/aps.56.6183
    [11] 张 毅. 相空间中离散力学系统对称性的摄动与Hojman型绝热不变量.  , 2007, 56(4): 1855-1859. doi: 10.7498/aps.56.1855
    [12] 张鹏玉, 方建会. 变质量Birkhoff系统的Lie对称性和非Noether守恒量.  , 2006, 55(8): 3813-3816. doi: 10.7498/aps.55.3813
    [13] 张 毅, 范存新, 梅凤翔. Lagrange系统对称性的摄动与Hojman型绝热不变量.  , 2006, 55(7): 3237-3240. doi: 10.7498/aps.55.3237
    [14] 张 毅. Birkhoff系统的一类新型绝热不变量.  , 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [15] 张 毅, 梅凤翔. 约束对Birkhoff系统Noether对称性和守恒量的影响.  , 2004, 53(8): 2419-2423. doi: 10.7498/aps.53.2419
    [16] 傅景礼, 陈立群, 谢凤萍. 相对论性Birkhoff系统的对称性摄动及其逆问题.  , 2003, 52(11): 2664-2670. doi: 10.7498/aps.52.2664
    [17] 张毅. Birkhoff系统的一类Lie对称性守恒量.  , 2002, 51(3): 461-464. doi: 10.7498/aps.51.461
    [18] 罗绍凯, 卢一兵, 周强, 王应德, 欧阳实. 转动相对论Birkhoff约束系统积分不变量的构造.  , 2002, 51(9): 1913-1917. doi: 10.7498/aps.51.1913
    [19] 张毅. 单面约束Birkhoff系统对称性的摄动与绝热不变量.  , 2002, 51(8): 1666-1670. doi: 10.7498/aps.51.1666
    [20] 傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民. 相对论Birkhoff系统动力学研究.  , 2001, 50(12): 2289-2295. doi: 10.7498/aps.50.2289
计量
  • 文章访问数:  6163
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-27
  • 修回日期:  2014-01-18
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map