Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optomechanical interaction with triple membranes

Xiao Jia Xu Da-Hai Yi Zhen Gu Wen-Ju

Citation:

Optomechanical interaction with triple membranes

Xiao Jia, Xu Da-Hai, Yi Zhen, Gu Wen-Ju
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cavity optomechanics becomes a promising field in quantum and nano technologies. Motivated by the optomechancial experiment with the membrane located in a high-finesse optical cavity and theoretical treatment on two membranes cavity optomechanics, we here study the optomechanical interaction of the system consisting of triple membranes within an optical cavity. The increase of membranes will increase the normal modes of the cavity and mechanical fields, and thus enrich the forms of optomechanical interaction. Firstly, we use the transfer matrix and resonance transmission methods to obtain the dispersion relation between the eigen-frequencies of the optical modes and the mechanical motions. Owing to the existence of triple mechanical membranes, the system possesses different forms of collective mechanical motion, and here we focus on the center-of-mass (COM) motion and relative motion of the equally placed membranes. The numerical solutions of the dispersion relation show that the optical eigenmodes are comprised of a group of closely spaced avoided-crossing quaternion of wave numbers, which arise from the transmission and reflection of the optical field at the membranes and the tunneling couplings between subcavity modes. Moreover, the change of each eigen wave number along each form of the mechanical motion is different, which implies the different forms of optomechanical coupling between eigenmodes and mechanical motions. Then, to achieve the explicit expressions of the optomechanical coupling, it is sufficient to use the perturbation method under the equilibrium condition of the system, where the amplitude of mechanical motion is much smaller than the optical wavelength. With using the implicit function differentiation theorem, the optomechanical coupling strengths between the four optical modes and the COM and relative mechanical motions are obtained respectively. We find that the strong quadratic optomechanical coupling between the optical modes and COM motion can be achieved, and the linear and quadratic couplings between the optical modes and relative motion can both be realized. By tuning the laser to pump different optical modes, we can choose either the linear or the quadratic coupling to the relative motion. Our method is universal to multi-membrane system, and the results may provide some references to theoretical and experimental investigations on the multi-membrane cavity optomechanics.
      Corresponding author: Gu Wen-Ju, guwenju@yangtzeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504031, 61505014) and the Yangtze Fund for Youth Teams of Science and Technology Innovation, China (Grant No. 2015cqt03).
    [1]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [2]

    Kippenberg T J, Vahala K J 2007 Opt. Express 15 17172

    [3]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 64 164211]

    [4]

    Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359

    [5]

    Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697

    [6]

    Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213

    [7]

    Carmon T, Rokhsari H, Yang L, Kippenberg T J, Vahala K J 2005 Phys. Rev. Lett. 94 223902

    [8]

    Rokhsari H, Kippenberg T J, Carmon T, Vahala K J 2005 Opt. Express 13 5293

    [9]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [10]

    Anetsberger G, Arcizet O, Unterreithmeier Q P, Riviere R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909

    [11]

    Lee D, Underwood M, Mason D, Shkarin A B, Hoch S W, Harris J G E 2015 Nat. Commun. 6 6232

    [12]

    Shkarin A B, Jacobs N E F, Hoch S W, Kashkanova A D, Deutsch C, Reichel J, Harris J G E 2014 Phys. Rev. Lett. 112 013602

    [13]

    Ludwig M, Hammerer K, Marquardt F 2010 Phys. Rev. A 82 012333

    [14]

    Komar P, Bennett S D, Stannigel K, Habraken S J M, Rabl P, Zoller P, Lukin M D 2013 Phys. Rev. A 87 013839

    [15]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2009 Phys. Rev. Lett. 102 103601

    [16]

    Tian L 2013 Phys. Rev. Lett. 110 233602

    [17]

    Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A, Lehnert K W 2014 Nat. Phys. 10 321

    [18]

    Bui C H, Zheng J, Hoch S W, Lee L Y T, Harris J G E, Wong C W 2012 Appl. Phys. Lett. 100 021110

    [19]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nature Phys. 6 707

    [20]

    Jacobs N E F, Hoch S W, Sankey J C, Kashkanova A, Jayich A M, Deutsch C, Reichel J, Harris J G E 2012 Appl. Phys. Lett. 101 221109

    [21]

    Underwood M, Mason D, Lee D, Xu H, Jiang L, Shkarin A B, Borkje K, Girvin S M, Harris J G E 2015 Phys. Rev. A 92 061801

    [22]

    Jayich A M, Sankey J C, Zwickl B M, Yang C, Thompson J D, Girvin S M, Clerk A A, Marquardt F, Harris J G E 2008 New J. Phys. 10 095008

    [23]

    Bhattacharya M, Meystre 2008 Phys. Rev. A 78 041801

    [24]

    Xuereb A, Genes C, Dantan A 2012 Phys. Rev. Lett. 109 223601

    [25]

    Tomadin A, Diehl S, Lukin M D, Rabl P, Zoller P 2012 Phys. Rev. A 86 033821

    [26]

    Ludwig M, Marquardt F 2013 Phys. Rev. Lett. 111 073603

    [27]

    Seok H, Buchmann L F, Wright E M, Meystre P 2013 Phys. Rev. A 88 063850

    [28]

    Xuereb A, Genes C, Pupillo G, Paternostro M, Dantan A 2014 Phys. Rev. Lett. 112 133604

    [29]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603

    [30]

    Bhattacharya M, Uys H, Meystre P 2008 Phys. Rev. A 77 033819

    [31]

    Hartmann M J, Plenio M B 2008 Phys. Rev. Lett. 101 200503

    [32]

    Zhang X, Zhang L 2015 Sci. Sin.: Phys. Mech. Astron. 45 044201 (in Chinese) [张旭, 张林 2015 中国科学: 物理学 力学 天文学 45 044201]

    [33]

    Fader W J 1985 IEEE J. Quantum Electron. 21 1838

    [34]

    Xu X W, Zhao Y J, Liu Y X 2013 Phys. Rev. A 88 022325

    [35]

    Xuereb A, Genes C, Dantan A 2013 Phys. Rev. A 88 053803

    [36]

    Deutsch I H, Spreeuw R J C, Rolston S L, Phillips W D 1995 Phys. Rev. A 52 1394

    [37]

    Ludwig M, Safavi-Naeini A H, Painter O, Marquardt F 2012 Phys. Rev. Lett. 109 063601

    [38]

    Gu W, Yi Z, Sun L, Xu D 2015 Phys. Rev. A 92 023811

  • [1]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [2]

    Kippenberg T J, Vahala K J 2007 Opt. Express 15 17172

    [3]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 64 164211]

    [4]

    Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359

    [5]

    Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697

    [6]

    Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213

    [7]

    Carmon T, Rokhsari H, Yang L, Kippenberg T J, Vahala K J 2005 Phys. Rev. Lett. 94 223902

    [8]

    Rokhsari H, Kippenberg T J, Carmon T, Vahala K J 2005 Opt. Express 13 5293

    [9]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [10]

    Anetsberger G, Arcizet O, Unterreithmeier Q P, Riviere R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909

    [11]

    Lee D, Underwood M, Mason D, Shkarin A B, Hoch S W, Harris J G E 2015 Nat. Commun. 6 6232

    [12]

    Shkarin A B, Jacobs N E F, Hoch S W, Kashkanova A D, Deutsch C, Reichel J, Harris J G E 2014 Phys. Rev. Lett. 112 013602

    [13]

    Ludwig M, Hammerer K, Marquardt F 2010 Phys. Rev. A 82 012333

    [14]

    Komar P, Bennett S D, Stannigel K, Habraken S J M, Rabl P, Zoller P, Lukin M D 2013 Phys. Rev. A 87 013839

    [15]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2009 Phys. Rev. Lett. 102 103601

    [16]

    Tian L 2013 Phys. Rev. Lett. 110 233602

    [17]

    Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A, Lehnert K W 2014 Nat. Phys. 10 321

    [18]

    Bui C H, Zheng J, Hoch S W, Lee L Y T, Harris J G E, Wong C W 2012 Appl. Phys. Lett. 100 021110

    [19]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nature Phys. 6 707

    [20]

    Jacobs N E F, Hoch S W, Sankey J C, Kashkanova A, Jayich A M, Deutsch C, Reichel J, Harris J G E 2012 Appl. Phys. Lett. 101 221109

    [21]

    Underwood M, Mason D, Lee D, Xu H, Jiang L, Shkarin A B, Borkje K, Girvin S M, Harris J G E 2015 Phys. Rev. A 92 061801

    [22]

    Jayich A M, Sankey J C, Zwickl B M, Yang C, Thompson J D, Girvin S M, Clerk A A, Marquardt F, Harris J G E 2008 New J. Phys. 10 095008

    [23]

    Bhattacharya M, Meystre 2008 Phys. Rev. A 78 041801

    [24]

    Xuereb A, Genes C, Dantan A 2012 Phys. Rev. Lett. 109 223601

    [25]

    Tomadin A, Diehl S, Lukin M D, Rabl P, Zoller P 2012 Phys. Rev. A 86 033821

    [26]

    Ludwig M, Marquardt F 2013 Phys. Rev. Lett. 111 073603

    [27]

    Seok H, Buchmann L F, Wright E M, Meystre P 2013 Phys. Rev. A 88 063850

    [28]

    Xuereb A, Genes C, Pupillo G, Paternostro M, Dantan A 2014 Phys. Rev. Lett. 112 133604

    [29]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603

    [30]

    Bhattacharya M, Uys H, Meystre P 2008 Phys. Rev. A 77 033819

    [31]

    Hartmann M J, Plenio M B 2008 Phys. Rev. Lett. 101 200503

    [32]

    Zhang X, Zhang L 2015 Sci. Sin.: Phys. Mech. Astron. 45 044201 (in Chinese) [张旭, 张林 2015 中国科学: 物理学 力学 天文学 45 044201]

    [33]

    Fader W J 1985 IEEE J. Quantum Electron. 21 1838

    [34]

    Xu X W, Zhao Y J, Liu Y X 2013 Phys. Rev. A 88 022325

    [35]

    Xuereb A, Genes C, Dantan A 2013 Phys. Rev. A 88 053803

    [36]

    Deutsch I H, Spreeuw R J C, Rolston S L, Phillips W D 1995 Phys. Rev. A 52 1394

    [37]

    Ludwig M, Safavi-Naeini A H, Painter O, Marquardt F 2012 Phys. Rev. Lett. 109 063601

    [38]

    Gu W, Yi Z, Sun L, Xu D 2015 Phys. Rev. A 92 023811

  • [1] Gu Zi-Heng, Zang Qiang, Zheng Gai-Ge. Dispersion properties of van der Waals phonon polaritons modulated by Weyl semimetals. Acta Physica Sinica, 2023, 72(19): 197102. doi: 10.7498/aps.72.20230167
    [2] Qian Li-Ming, Sun Meng-Ran, Zheng Gai-Ge. Coupling interactions of anisotropic hyperbolic phonon polaritons in double layered orthorhombic molybdenum trioxide. Acta Physica Sinica, 2023, 72(7): 077101. doi: 10.7498/aps.72.20222144
    [3] Su Rui-Xia, Huang Xia, Zheng Zhi-Gang. Lattice wave solution and its dispersion relation of two coupled Frenkel-Kontorova chains. Acta Physica Sinica, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [4] Li Wen-Qiu, Zhao Bin, Wang Gang. Effects of electron temperature on energy deposition properties of electromagnetic modes propagating in helicon plasma. Acta Physica Sinica, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [5] Li Wen-Qiu, Zhao Bin, Wang Gang, Xiang Dong. Parametric analysis of mode coupling and liner energy deposition properties of helicon and Trivelpiece-Gould waves in helicon plasma. Acta Physica Sinica, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [6] Li Wen-Qiu, Wang Gang, Su Xiao-Bao. Analysis of mode radiation characteristics in a non-magnetized cold plasma column. Acta Physica Sinica, 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [7] Ren Yi-Chong, Fan Hong-Yi. Solving dispersion relations of one-dimensional diatomic chain with on-site potential by invariant eigen-operator method. Acta Physica Sinica, 2013, 62(15): 156301. doi: 10.7498/aps.62.156301
    [8] Shi Di-Fu, Wang Hong-Gang, Li Wei, Qian Bao-Liang. Theoretical analysis and numerical simulation of rising sun magnetron with sector cavities. Acta Physica Sinica, 2013, 62(15): 151101. doi: 10.7498/aps.62.151101
    [9] Li Xiao-Ze, Teng Yan, Wang Jian-Guo, Song Zhi-Min, Zhang Li-Jun, Zhang Yu-Chuan, Ye Hu. Mode selection in surface wave oscillator with overmoded structure. Acta Physica Sinica, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [10] Wang Guan-Yu, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Ma Jian-Li, Wang Xiao-Yan. Analytical dispersion relation model for conduction band of uniaxial strained Si. Acta Physica Sinica, 2012, 61(9): 097103. doi: 10.7498/aps.61.097103
    [11] Liu San-Qiu, Guo Hong-Mei. Transverse dispersion laws in ultra-relativistic plasma with fast electron distribution. Acta Physica Sinica, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [12] Liu Bing-Can, Lu Zhi-Xin, Yu Li. The dispersion relation for surface plasmon at a metal-Kerr nonlinear medium interface. Acta Physica Sinica, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [13] Ji Pei-Yong, Lu Nan, Zhu Jun. Dispersion relation and Landau damping of linear waves in quantum plasma. Acta Physica Sinica, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [14] Song Jian-Jun, Zhang He-Ming, Dai Xian-Ying, Hu Hui-Yong, Xuan Rong-Xi. Dispersion relation model of valence band in strained Si. Acta Physica Sinica, 2008, 57(11): 7228-7232. doi: 10.7498/aps.57.7228
    [15] Li Hai-Yang, Zhang Ye-Wen, Wang Peng-Chun, Li Gui-Quan. The transmission properties of resonant structure of one-dimension metamaterials. Acta Physica Sinica, 2007, 56(11): 6480-6485. doi: 10.7498/aps.56.6480
    [16] Wang Liang, Cao Jin-Xiang, Wang Yan, Niu Tian-Ye, Wang Ge, Zhu Ying. Experimental study of propagation time of electromagnetic pulse through laboratory plasma. Acta Physica Sinica, 2007, 56(3): 1429-1433. doi: 10.7498/aps.56.1429
    [17] Zhao Guo-Wei, Xu Yue-Min, Chen Cheng. Calculation of dispersion relation and radiation pattern of plasma antenna. Acta Physica Sinica, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [18] Wei Xin-Hua, Zhou Guo-Cheng, Cao Jin-Bin, Li Liu-Yuan. Low-frequency electromagnetic instabilities in a collisionless current sheet:magnetohydrodynamic model. Acta Physica Sinica, 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [19] Xie Hong-Quan, Liu Pu-Kun, Li Cheng-Yue, Yan Yang, Liu Sheng-Gang. Analysis of the characteristics of low-frequency modes in a corrugated waveguide filled with plasma. Acta Physica Sinica, 2004, 53(9): 3114-3118. doi: 10.7498/aps.53.3114
    [20] FAN ZHI-KAI, LIU QING-XIANG. ANALYTIC RESEARCH ON THE DISPERSION RELATION AND FIELD DISTRIBUTION OF THE RESON ANT CAVITY CHAIN. Acta Physica Sinica, 2000, 49(7): 1249-1255. doi: 10.7498/aps.49.1249
Metrics
  • Abstract views:  6425
  • PDF Downloads:  225
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2016
  • Accepted Date:  01 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map