Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle study of the oxygen adsorption on Zr surface with Nb or Ge

Zhang Hai-Hui Li Xiao-Di Xie Yao-Ping Hu Li-Juan Yao Mei-Yi

Citation:

First-principle study of the oxygen adsorption on Zr surface with Nb or Ge

Zhang Hai-Hui, Li Xiao-Di, Xie Yao-Ping, Hu Li-Juan, Yao Mei-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is observed that the addition of Nb or Ge to Zr alloy can improve its corrosion resistance. Because of the extreme importance of the mechanism of oxidation to corrosion properties of Zr alloy, we systematically investigate the O adsorption properties on pure Zr surface and Zr surface with Nb or Ge using first-principle calculations based on density functional theory. Firstly, we present the absorption energies to reveal the influences of Nb and Ge on the O absorption capacity of Zr surfaces, resepctively. According to the calculated absorption energies, we find that Nb and Ge reduce the oxygen absorption capacities of most of surfaces, and the only exception is that Nb enhances the oxygen absorption capacity of Zr(1120) surface. Moreover, the absorption energy of O at favorable site on Zr(0001) surface is much lower than on Zr(1010) or (1120) surface. Therefore, the initial oxidation of polycrystalline Zr should occur at Zr(0001) surface and the absorption capacity of this surface takes a predominant role in the initial oxidation of polycrystalline surface. Secondly, the segregation of Nb or Ge in Zr alloy is anisotropic. We find that the segregation of Ge to surface is exothermic, while the segregation of Nb to surface is endothermic. Nb and Ge migrate to Zr(0001) surface more easily than to Zr(1120) and Zr(1010) surfaces. Therefore, the influence of Nb or Ge on absorption property of Zr(0001) is much larger than that of Zr(1010) or (1120) surface. Based on the adsorption and segregation properties of Nb and Ge on Zr surfaces, both Nb and Ge can reduce the oxygen absorption capacity of Zr surface and inhibit the initial oxidation of Zr alloy surface, which can be used to understand the experimental observation that Nb and Ge can improve the corrosion resistance of Zr alloy. Finally, the electronic structure analysis shows that the influences of Nb and Ge on oxygen adsorption capacity of Zr surface are exerted by changing the d-band distribution. According to Hammer-Norskov d-band center theory, the absorption energy of absorpate on transition metal surface is mainly determined by d-band center. The addition of Nb or Ge to the Zr surface changes the location of d-band of the surface, which results in the variation of absorption energy of O atom on the Zr surface. For absorption at top site on each surface, it is found that the absorption energy of O only depends on the d-band center of the surface atom below the O atoms. However, for absorption at favorable sites on each surface, the absorption energy of O atom is influenced not only by the d-band center of surface atom, but also by atomic structural properties of the surface.
      Corresponding author: Xie Yao-Ping, ypxie@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51301102), and the Shanghai Natural Science Foundation of Shanghai, China (Grant No. 15ZR1416000).
    [1]

    Liu J Z 2007 Structure Nuclear Materials (Beijing: Chemical Industry Press) pp19-22 (in Chinese) [刘建章 2007核结构材料(北京: 化学工业出版社) 第19-22页]

    [2]

    Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Zhu Y L 2007 Rare Met. Mater. Eng. 36 1129 (in Chinese) [周邦新, 李强, 姚美意, 夏爽, 刘文庆, 褚于良 2007 稀有金属材料与工程 36 1129]

    [3]

    Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X 2011 Acta Metall. Sin. 47 163 (in Chinese) [李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新 2011 金属学报 47 163]

    [4]

    Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H 2005 Atom Energ. Sci. Technol. (suppl.) 39 1 (in Chinese) [赵文金, 周邦新, 苗志, 彭倩, 蒋有荣, 蒋宏曼, 庞华 2005 原子能科学技术 (增刊) 39 1]

    [5]

    Kruger R M, Adamson R B, Brenner S S 1992 J. Nucl. Mater. 189 193

    [6]

    Zhou B X 1993 Chin. J. Nucl. Sci. Eng. 13 51 (in Chinese) [周邦新 1993 核科学与工程 13 51]

    [7]

    Liu W Q, Geng X, Liu Q D, Li Q, Yao M Y, Zhou B X 2008 Rare Met. Mater. Eng. 37 509 (in Chinese) [刘文庆, 耿迅, 刘庆冬, 李强, 姚美意, 周邦新 2008 稀有金属材料与工程 37 509]

    [8]

    Gong W J, Zhang H L, Wu C F, Tian H, Wang X T 2013 Corros. Sci. 77 391

    [9]

    Huang J, Yao M Y, Gao C Y, Liang X, Peng J C, Zhang J L, Zhou B X 2015 Corros. Sci. 99 172

    [10]

    Park J Y, Kim H G, Jeong Y H, Jung Y H 2004 J. Nucl. Mater. 335 433

    [11]

    Qin W, Nam C, Li H L, Szpunar J A 2007 Acta Mater. 55 1695

    [12]

    Tewari R, Srivastava D, Dey G K, Chakravarty J K, Banerjee S 2008 J. Nucl. Mater. 383 153

    [13]

    Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L 2009 Corros. Prot. 30 589 (in Chinese) [周邦新, 李强, 姚美意, 刘文庆, 褚于良 2009 腐蚀与防护 30 589]

    [14]

    Garner A, Gholinia A, Frankel P, Gass M, MacLaren I, Preuss M 2014 Acta Mater. 80 159

    [15]

    Gabory B D, Motta A T, Wang K 2015 J. Nucl. Mater. 456 272

    [16]

    Yao M Y, Gao C Y, Huang J, Peng J C, Liang X, Zhang J L, Zhou B X, Li Q 2015 Corros. Sci. 100 169

    [17]

    Nikulina A V, Markelov V A 1996 Proceedings of the 11th International Symposium on Zirconium in the Nuclear Industry Garmisch Partenkirchen, Germany, September 11-14, 1995 p785

    [18]

    Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H 2009 J. Alloys Compd. 479 423

    [19]

    Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q 2008 Shanghai Met. 30 1 (in Chinese) [姚美意, 周邦新, 李强, 夏爽, 刘文庆 2008 上海金属 30 1]

    [20]

    Sabol G P 2005 Proceedings of the 14th International Symposium on Zirconium in the Nuclear Industry Stockholm, Sweden, June 13-17, 2004 p3

    [21]

    Zhou B X, Zhao W J, Mao Z 1997 New Zirconium Alloy Research (Beijing: Chemical Industry Press) p183 (in Chinese) [周邦新, 赵文金, 苗志 1997 新锆合金的研究 (北京: 化学工业出版社) 第183页]

    [22]

    Zhao W J 2004 Rare Met. Lett. 23 15 (in Chinese) [赵文金 2004 稀有金属快报 23 15]

    [23]

    Park J Y, Choi B K, Yoo S J, Jeong Y H 2006 J. Nucl. Mater. 359 59

    [24]

    Yao M Y, Li S L, Zhang X, Zhou B X 2011 Acta Metall. Sin. 47 865 (in Chinese) [姚美意, 李士炉, 张欣, 周邦新 2011 金属学报 47 865]

    [25]

    Jeong Y H, Kim H G, Kim D J, Choi B K, Kim J H 2003 J. Nucl. Mater. 323 72

    [26]

    Xie X F, Zhang J L, Zhu L, Yao M Y, Zhou B X, Peng J C 2012 Acta Metall. Sin. 48 1487 (in Chinese) [谢兴飞, 张金龙, 朱莉, 姚美意, 周邦新, 彭剑超 2012 金属学报 48 1487]

    [27]

    Zhang J L, Xie X F, Yao M Y, Zhou B X, Peng J C, Li Q 2013 Chin. J. Nonferrous Met. 23 1542 (in Chinese) [张金龙, 谢兴飞, 姚美意, 周邦新, 彭剑超, 李强 2013 中国有色金属学报 23 1542]

    [28]

    Zhang J L, Hu Y, Tu L M, Sun F T, Yao M Y, Zhou B X 2016 Corros. Sci. 102 161

    [29]

    Sun J P, Zhou K L, Liang X D 2016 Acta Phys. Sin. 65 18201 (in Chinese) [孙建平, 周科良, 梁晓东 2016 65 018201]

    [30]

    Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sens. Actuators B: Chem. 224 372

    [31]

    Yan J, Xu W Y, Guo H, Gong Y, Mi Y M, Zhao X X 2015 Acta Phys. Sin. 64 016802 (in Chinese) [闫静, 徐位云郭辉, 龚毓, 宓一鸣, 赵新新 2015 64 016802]

    [32]

    Luo H J, Cai J Q, Tao X M, Tan M Q 2015 Comput. Mater. Sci. 101 47

    [33]

    Zeng W, Liu T M, Li T M, Xie B J 2015 Physica E: Low-dimensional Systems and Nanostructures 67 59

    [34]

    Wang G J, Huang F, Chen X B, Gong C L, Liu H, Wen S, Cheng F, Zheng X, Zheng G W, Pan M 2015 Catal. Commun. 69 16

    [35]

    Zhang P, Wang S X, Zhao J, He C H, Zhang P 2011 J. Nucl. Mater. 418 159

    [36]

    Yamamoto M, Chan C T, Ho K M, Naito S 1996 Phys. Rev. B 54 14111

    [37]

    Jomard G, Petit T, Magaud L, Pasturel A 1999 Phys. Rev. B 60 15624

    [38]

    Jomard G, Petit T, Magaud L, Pasturel A, Kresse G, Hafner J 2000 Mol. Simulat. 24 111

    [39]

    Jomard G, Pasturel A 2001 Appl. Surf. Sci. 177 230

    [40]

    Wang F H, Liu S Y, Shang J X, Zhou Y S, Li Z Y, Yang J L 2008 Surf. Sci. 602 2212

    [41]

    Yao R, Wang F H, Zhou Y S 2009 Acta Phys. Sin. 58 177 (in Chinese) [姚蕊, 王福合, 周云松 2009 58 177]

    [42]

    Glazoff M V, Tokuhiro A, Rashkeev S N, Sabharwall P 2014 J. Nucl. Mater. 444 65

    [43]

    Chiang T W, Chernatynskiy A, Noordhoek M J, Sinnott S B, Phillpot S R 2015 Comp. Mater. Sci. 98 112

    [44]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [45]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [46]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15

    [47]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136B 864

    [48]

    Kohn W, Sham L J 1965 Phys. Rev. 140A 1133

    [49]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [50]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [51]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [52]

    Kittel C (translated by Xiang J Z, Wu X H) 2012 Introduction to Solid State Physics (Eighth Ed.) (Beijing: Chemical Industry Press) p15 (in Chinese) [基泰尔 C 著 (项金钟, 吴兴惠 译) 2012 固体物理导论 (第八版) (北京: 化学工业出版社) 第15页]

    [53]

    Zhang C S, Flinn B J, Mitchell I V, Norton P R 1991 Surf. Sci. 245 373

    [54]

    Zhang C S, Li B, Norton P R 1994 Surf. Sci. 313 308

    [55]

    Kim H G, Kim T H, Jeong Y H 2002 J. Nucl. Mater. 306 44

    [56]

    Bakradze G, Jeurgens L P H, Mittemeijer E J 2010 Surf. Interface Anal. 42 588

    [57]

    Bakradze G, Jeurgens L P H, Mittemeijer E J 2011 J. Appl. Phys. 110 024904

    [58]

    Hammer B, Norskov J K 2000 Adv. Catal. 45 71

  • [1]

    Liu J Z 2007 Structure Nuclear Materials (Beijing: Chemical Industry Press) pp19-22 (in Chinese) [刘建章 2007核结构材料(北京: 化学工业出版社) 第19-22页]

    [2]

    Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Zhu Y L 2007 Rare Met. Mater. Eng. 36 1129 (in Chinese) [周邦新, 李强, 姚美意, 夏爽, 刘文庆, 褚于良 2007 稀有金属材料与工程 36 1129]

    [3]

    Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X 2011 Acta Metall. Sin. 47 163 (in Chinese) [李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新 2011 金属学报 47 163]

    [4]

    Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H 2005 Atom Energ. Sci. Technol. (suppl.) 39 1 (in Chinese) [赵文金, 周邦新, 苗志, 彭倩, 蒋有荣, 蒋宏曼, 庞华 2005 原子能科学技术 (增刊) 39 1]

    [5]

    Kruger R M, Adamson R B, Brenner S S 1992 J. Nucl. Mater. 189 193

    [6]

    Zhou B X 1993 Chin. J. Nucl. Sci. Eng. 13 51 (in Chinese) [周邦新 1993 核科学与工程 13 51]

    [7]

    Liu W Q, Geng X, Liu Q D, Li Q, Yao M Y, Zhou B X 2008 Rare Met. Mater. Eng. 37 509 (in Chinese) [刘文庆, 耿迅, 刘庆冬, 李强, 姚美意, 周邦新 2008 稀有金属材料与工程 37 509]

    [8]

    Gong W J, Zhang H L, Wu C F, Tian H, Wang X T 2013 Corros. Sci. 77 391

    [9]

    Huang J, Yao M Y, Gao C Y, Liang X, Peng J C, Zhang J L, Zhou B X 2015 Corros. Sci. 99 172

    [10]

    Park J Y, Kim H G, Jeong Y H, Jung Y H 2004 J. Nucl. Mater. 335 433

    [11]

    Qin W, Nam C, Li H L, Szpunar J A 2007 Acta Mater. 55 1695

    [12]

    Tewari R, Srivastava D, Dey G K, Chakravarty J K, Banerjee S 2008 J. Nucl. Mater. 383 153

    [13]

    Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L 2009 Corros. Prot. 30 589 (in Chinese) [周邦新, 李强, 姚美意, 刘文庆, 褚于良 2009 腐蚀与防护 30 589]

    [14]

    Garner A, Gholinia A, Frankel P, Gass M, MacLaren I, Preuss M 2014 Acta Mater. 80 159

    [15]

    Gabory B D, Motta A T, Wang K 2015 J. Nucl. Mater. 456 272

    [16]

    Yao M Y, Gao C Y, Huang J, Peng J C, Liang X, Zhang J L, Zhou B X, Li Q 2015 Corros. Sci. 100 169

    [17]

    Nikulina A V, Markelov V A 1996 Proceedings of the 11th International Symposium on Zirconium in the Nuclear Industry Garmisch Partenkirchen, Germany, September 11-14, 1995 p785

    [18]

    Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H 2009 J. Alloys Compd. 479 423

    [19]

    Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q 2008 Shanghai Met. 30 1 (in Chinese) [姚美意, 周邦新, 李强, 夏爽, 刘文庆 2008 上海金属 30 1]

    [20]

    Sabol G P 2005 Proceedings of the 14th International Symposium on Zirconium in the Nuclear Industry Stockholm, Sweden, June 13-17, 2004 p3

    [21]

    Zhou B X, Zhao W J, Mao Z 1997 New Zirconium Alloy Research (Beijing: Chemical Industry Press) p183 (in Chinese) [周邦新, 赵文金, 苗志 1997 新锆合金的研究 (北京: 化学工业出版社) 第183页]

    [22]

    Zhao W J 2004 Rare Met. Lett. 23 15 (in Chinese) [赵文金 2004 稀有金属快报 23 15]

    [23]

    Park J Y, Choi B K, Yoo S J, Jeong Y H 2006 J. Nucl. Mater. 359 59

    [24]

    Yao M Y, Li S L, Zhang X, Zhou B X 2011 Acta Metall. Sin. 47 865 (in Chinese) [姚美意, 李士炉, 张欣, 周邦新 2011 金属学报 47 865]

    [25]

    Jeong Y H, Kim H G, Kim D J, Choi B K, Kim J H 2003 J. Nucl. Mater. 323 72

    [26]

    Xie X F, Zhang J L, Zhu L, Yao M Y, Zhou B X, Peng J C 2012 Acta Metall. Sin. 48 1487 (in Chinese) [谢兴飞, 张金龙, 朱莉, 姚美意, 周邦新, 彭剑超 2012 金属学报 48 1487]

    [27]

    Zhang J L, Xie X F, Yao M Y, Zhou B X, Peng J C, Li Q 2013 Chin. J. Nonferrous Met. 23 1542 (in Chinese) [张金龙, 谢兴飞, 姚美意, 周邦新, 彭剑超, 李强 2013 中国有色金属学报 23 1542]

    [28]

    Zhang J L, Hu Y, Tu L M, Sun F T, Yao M Y, Zhou B X 2016 Corros. Sci. 102 161

    [29]

    Sun J P, Zhou K L, Liang X D 2016 Acta Phys. Sin. 65 18201 (in Chinese) [孙建平, 周科良, 梁晓东 2016 65 018201]

    [30]

    Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sens. Actuators B: Chem. 224 372

    [31]

    Yan J, Xu W Y, Guo H, Gong Y, Mi Y M, Zhao X X 2015 Acta Phys. Sin. 64 016802 (in Chinese) [闫静, 徐位云郭辉, 龚毓, 宓一鸣, 赵新新 2015 64 016802]

    [32]

    Luo H J, Cai J Q, Tao X M, Tan M Q 2015 Comput. Mater. Sci. 101 47

    [33]

    Zeng W, Liu T M, Li T M, Xie B J 2015 Physica E: Low-dimensional Systems and Nanostructures 67 59

    [34]

    Wang G J, Huang F, Chen X B, Gong C L, Liu H, Wen S, Cheng F, Zheng X, Zheng G W, Pan M 2015 Catal. Commun. 69 16

    [35]

    Zhang P, Wang S X, Zhao J, He C H, Zhang P 2011 J. Nucl. Mater. 418 159

    [36]

    Yamamoto M, Chan C T, Ho K M, Naito S 1996 Phys. Rev. B 54 14111

    [37]

    Jomard G, Petit T, Magaud L, Pasturel A 1999 Phys. Rev. B 60 15624

    [38]

    Jomard G, Petit T, Magaud L, Pasturel A, Kresse G, Hafner J 2000 Mol. Simulat. 24 111

    [39]

    Jomard G, Pasturel A 2001 Appl. Surf. Sci. 177 230

    [40]

    Wang F H, Liu S Y, Shang J X, Zhou Y S, Li Z Y, Yang J L 2008 Surf. Sci. 602 2212

    [41]

    Yao R, Wang F H, Zhou Y S 2009 Acta Phys. Sin. 58 177 (in Chinese) [姚蕊, 王福合, 周云松 2009 58 177]

    [42]

    Glazoff M V, Tokuhiro A, Rashkeev S N, Sabharwall P 2014 J. Nucl. Mater. 444 65

    [43]

    Chiang T W, Chernatynskiy A, Noordhoek M J, Sinnott S B, Phillpot S R 2015 Comp. Mater. Sci. 98 112

    [44]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [45]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [46]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15

    [47]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136B 864

    [48]

    Kohn W, Sham L J 1965 Phys. Rev. 140A 1133

    [49]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [50]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [51]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [52]

    Kittel C (translated by Xiang J Z, Wu X H) 2012 Introduction to Solid State Physics (Eighth Ed.) (Beijing: Chemical Industry Press) p15 (in Chinese) [基泰尔 C 著 (项金钟, 吴兴惠 译) 2012 固体物理导论 (第八版) (北京: 化学工业出版社) 第15页]

    [53]

    Zhang C S, Flinn B J, Mitchell I V, Norton P R 1991 Surf. Sci. 245 373

    [54]

    Zhang C S, Li B, Norton P R 1994 Surf. Sci. 313 308

    [55]

    Kim H G, Kim T H, Jeong Y H 2002 J. Nucl. Mater. 306 44

    [56]

    Bakradze G, Jeurgens L P H, Mittemeijer E J 2010 Surf. Interface Anal. 42 588

    [57]

    Bakradze G, Jeurgens L P H, Mittemeijer E J 2011 J. Appl. Phys. 110 024904

    [58]

    Hammer B, Norskov J K 2000 Adv. Catal. 45 71

  • [1] Peng Jie, Zhang Si-Jie, Wang Ke, Dove Martin. Density functional theory calculation of spectrum and excitation properties of mer-Alq3. Acta Physica Sinica, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [2] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [3] Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan. Density functional study of metal lithium atom adsorption on antimonene. Acta Physica Sinica, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [4] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [6] Zhang Feng-Chun, Li Chun-Fu, Zhang Cong-Lei, Ran Zeng-Ling. Surface absorptions of H2S, HS and S on Fe(111) investigated by density functional theory. Acta Physica Sinica, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [7] Li Hong-Jia, Sun Guang-Ai, Gong Jian, Chen Bo, Wang Hong, Li Jian, Pang Bei-Bei, Zhang Ying, Peng Shu-Ming. Deformation behaviors of zircaloy-4 alloy under uniaxial compression. Acta Physica Sinica, 2014, 63(23): 236101. doi: 10.7498/aps.63.236101
    [8] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [9] Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min. Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues. Acta Physica Sinica, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [10] Yuan Jian-Mei, Hao Wen-Ping, Li Shun-Hui, Mao Yu-Liang. Density functional study on the adsorption of C atoms on Ni (111) surface. Acta Physica Sinica, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [11] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [13] Meng Da-Qiao, Luo Wen-Hua, Li Gan, Chen Hu-Chi. Density functional study of CO2 adsorption on Pu(100) surface. Acta Physica Sinica, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [14] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [15] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [18] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [19] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
Metrics
  • Abstract views:  7170
  • PDF Downloads:  223
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2015
  • Accepted Date:  28 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map