搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zr-4合金压缩形变行为的研究

李洪佳 孙光爱 龚建 陈波 王虹 李建 庞蓓蓓 张莹 彭述明

引用本文:
Citation:

Zr-4合金压缩形变行为的研究

李洪佳, 孙光爱, 龚建, 陈波, 王虹, 李建, 庞蓓蓓, 张莹, 彭述明

Deformation behaviors of zircaloy-4 alloy under uniaxial compression

Li Hong-Jia, Sun Guang-Ai, Gong Jian, Chen Bo, Wang Hong, Li Jian, Pang Bei-Bei, Zhang Ying, Peng Shu-Ming
PDF
导出引用
  • 密排六方结构的Zr呈现弹塑性各向异性, 轧制工艺会使材料内部产生晶间应力. 准确地评估Zr合金内部的晶间应力分布并明确其微观形变机制, 对其服役能力和使用寿命的准确评判具有重要的科学意义和应用价值. 利用中子原位衍射技术结合弹塑性自洽(EPSC)模拟分析了Zr-4合金的压缩形变行为, 加载方式为沿轧板厚度方向压缩. 研究中辅以非原位的背散射电子衍射测试进行织构演化分析及透射电镜(TEM)测试分析缺陷形态. EPSC模拟可以定量地给出不同形变量下的形变机制, 并且计算结果可由TEM实验佐证. 研究表明: 当形变量较小(10}20> (a>型)滑移起主导作用; 随着塑性形变量的增加, 锥面滑移的作用增强, 且锥面{1011}23> (c+a>型)滑移的作用大于柱面{1010}20> (a>型)滑移, 少量的锥面{1011}20> (a>型)和{1012}20> (a>型)滑移也存在.
    Zirconium (Zr) has a hexagonal close-packed crystal structure, which exhibits elastic and plastic anisotropy. Internal stresses can be easily generated in the rolling process and the subsequent plastic deformation process. It is critical to evaluate the internal stresses and the deformation mechanisms of Zr alloy materials. The deformation behaviors of Zr alloy influence directly its service life and safety. In this work, compression deformation behaviors of zircaloy-4 (Zr-4) alloy have been studied by the in situ neutron diffraction technique combined with the elastic-plastic self-consistent (EPSC) simulation. A compressive external load is applied along the thickness direction of the rolled plate, which is called through-thickness compression. Electron back-scattered diffraction is used to analyze the texture evolution during the plastic deformation. Transmission electron microscopy (TEM) is used to measure the distribution of the defects in the deformed sample. The EPSC simulation provides the deformation mechanism quantitatively by fitting the in situ neutron diffraction data, and the simulated results is confirmed by the TEM observations. Results show that when the true strain is small (less than 0.55%), prismatic {1010}20> (a> type) slip dominates; however, as the plastic strain is increased, the percentage of pyramidal {1011}23> (c+a> type) slip becomes larger than that of prismatic {1010}20> (a> type) slip, and the pyramidal {1011}20> (a> type) slip and pyramidal {1012}20> (a> type) slip may exist.
    • 基金项目: 中国博士后科学基金(批准号:2012M521715)和国家自然科学基金(批准号:91126001,11105128,51231002)资助的课题.
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2012M521715) and the National Natural Science Foundation of China (Grant Nos. 91126001, 11105128, 51231002).
    [1]

    Northwood D O 1985 Mater. Des. 6 58

    [2]

    Fisher E S, Renken C J 1964 Phys. Rev. 135 A482

    [3]

    Tome C N, Maudlin P J, Lebensohn R A, Kaschner G C 2001 Acta Mater. 49 3085

    [4]

    McCabe R J, Cerreta E K, Misra A, Kaschner G C, Tome C N 2006 Philos. Mag. 86 3595

    [5]

    Beyerlein I J, Tome C N 2008 Int. J. Plast. 24 867

    [6]

    Noyan I C, Cohen J B 1987 Residual Stress Measurement by Diffraction and Interpretation (New York: Springer)

    [7]

    Pang J W L, Holden T M, Turner P A, Mason T E 1999 Acta Mater. 47 373

    [8]

    Gou C, Cheng Y F, Chen D F, Hu B P, Wang Y Z, Liu G C, Yan Q W, Zhang P L, Sun X D, Wei Y N, Sun K 1994 Chin. Phys. 3 764

    [9]

    Wei B 2013 Chin. Phys. B 22 087405

    [10]

    Allen A, Andreani C, Hutchings M T, Windsor C G 1981 NDT Int. 14 249

    [11]

    Withers P J 2007 Comptes. Rendus. Phys. 8 806

    [12]

    Albertini G, Bruno G, Carrado A, Fiori F, Rogante M, Rustichelli F 1999 Meas. Sci. Technol. 10 R56

    [13]

    Stone H J, Withers P J, Holden T M, Roberts S M, Reed R C 1999 Metall. Mater. Trans. A 30 1797

    [14]

    Jia N, Peng L R, Brown D W, Clausen B, Wang Y D 2008 Metall. Mater. Trans. A 39 3134

    [15]

    Muránsky O, Sittner P, Zrnik J, Oliver E C 2008 Metall. Mater. Trans. A 39 3097

    [16]

    Davydov V, Lukas P, Strunz P, Kuzel R 2009 J. Phys.: Condens. Matter 21 095407

    [17]

    Proust G, Kaschner G C, Beyerlein I J, Clausen B, Brown D W, McCabe R J, Tome C N 2010 Exp. Mech. 50 125

    [18]

    Ma D, Stoica A D, An K, Yang L, Bei H, Mills R A, Skorpenske H, Wang X L 2011 Metall. Mater. Trans. A 42 1444

    [19]

    Eshelby J D 1957 Proc. R. Soc. Lond. A 241 376

    [20]

    Hill R 1965 J. Mech. Phys. Solids 13 89

    [21]

    Hutchinson J W 1976 Proc. R. Soc. Lond. A 348 101

    [22]

    Lebensohn R A, Tome C N 1993 Acta Metall. Mater. 41 2611

    [23]

    Proust G, Tome C N, Kaschner G C 2007 Acta Mater. 55 2137

    [24]

    Gloaguen D, Berchi T, Girard E, Guillen R 2007 Acta Mater. 55 4369

    [25]

    Li H J, Sun G A, Woo W, Gong J, Chen B, Wang Y D, Fu Y Q, Huang C Q, Xie L, Peng S M 2014 J. Nucl. Mater. 446 134

    [26]

    Hao X P, Wang B Y, Yu R S, Wei L 2007 Acta Phys. Sin. 56 6543 (in Chinese) [郝小鹏, 王宝义, 于润升, 魏龙 2007 56 6543]

    [27]

    Hutchinson J W 1970 Proc. R. Soc. Lond. A 319 247

    [28]

    Turner P A, Christodoulou N, Tomé C N 1995 Int. J. Plast. 11 251

    [29]

    Tenckhoff E 1988 Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy (Philadelphia: Special Technical Publication) pp19-23

    [30]

    Holt R A, Causey A R 1987 J. Nucl. Mater. 150 306

    [31]

    Wei Y L, Godfrey A, Liu W, Liu Q, Huang X, Hansen N, Winther G 2011 Scripta Mater. 65 355

    [32]

    Caillard D, Couret A 2002 Mat. Sci. Eng. A 322 108

    [33]

    Bacon D J, Vitek V 2002 Metall. Mater. Trans. A 33 721

    [34]

    Monnet G, Devincre B, Kubin L P 2004 Acta Mater. 52 4317

  • [1]

    Northwood D O 1985 Mater. Des. 6 58

    [2]

    Fisher E S, Renken C J 1964 Phys. Rev. 135 A482

    [3]

    Tome C N, Maudlin P J, Lebensohn R A, Kaschner G C 2001 Acta Mater. 49 3085

    [4]

    McCabe R J, Cerreta E K, Misra A, Kaschner G C, Tome C N 2006 Philos. Mag. 86 3595

    [5]

    Beyerlein I J, Tome C N 2008 Int. J. Plast. 24 867

    [6]

    Noyan I C, Cohen J B 1987 Residual Stress Measurement by Diffraction and Interpretation (New York: Springer)

    [7]

    Pang J W L, Holden T M, Turner P A, Mason T E 1999 Acta Mater. 47 373

    [8]

    Gou C, Cheng Y F, Chen D F, Hu B P, Wang Y Z, Liu G C, Yan Q W, Zhang P L, Sun X D, Wei Y N, Sun K 1994 Chin. Phys. 3 764

    [9]

    Wei B 2013 Chin. Phys. B 22 087405

    [10]

    Allen A, Andreani C, Hutchings M T, Windsor C G 1981 NDT Int. 14 249

    [11]

    Withers P J 2007 Comptes. Rendus. Phys. 8 806

    [12]

    Albertini G, Bruno G, Carrado A, Fiori F, Rogante M, Rustichelli F 1999 Meas. Sci. Technol. 10 R56

    [13]

    Stone H J, Withers P J, Holden T M, Roberts S M, Reed R C 1999 Metall. Mater. Trans. A 30 1797

    [14]

    Jia N, Peng L R, Brown D W, Clausen B, Wang Y D 2008 Metall. Mater. Trans. A 39 3134

    [15]

    Muránsky O, Sittner P, Zrnik J, Oliver E C 2008 Metall. Mater. Trans. A 39 3097

    [16]

    Davydov V, Lukas P, Strunz P, Kuzel R 2009 J. Phys.: Condens. Matter 21 095407

    [17]

    Proust G, Kaschner G C, Beyerlein I J, Clausen B, Brown D W, McCabe R J, Tome C N 2010 Exp. Mech. 50 125

    [18]

    Ma D, Stoica A D, An K, Yang L, Bei H, Mills R A, Skorpenske H, Wang X L 2011 Metall. Mater. Trans. A 42 1444

    [19]

    Eshelby J D 1957 Proc. R. Soc. Lond. A 241 376

    [20]

    Hill R 1965 J. Mech. Phys. Solids 13 89

    [21]

    Hutchinson J W 1976 Proc. R. Soc. Lond. A 348 101

    [22]

    Lebensohn R A, Tome C N 1993 Acta Metall. Mater. 41 2611

    [23]

    Proust G, Tome C N, Kaschner G C 2007 Acta Mater. 55 2137

    [24]

    Gloaguen D, Berchi T, Girard E, Guillen R 2007 Acta Mater. 55 4369

    [25]

    Li H J, Sun G A, Woo W, Gong J, Chen B, Wang Y D, Fu Y Q, Huang C Q, Xie L, Peng S M 2014 J. Nucl. Mater. 446 134

    [26]

    Hao X P, Wang B Y, Yu R S, Wei L 2007 Acta Phys. Sin. 56 6543 (in Chinese) [郝小鹏, 王宝义, 于润升, 魏龙 2007 56 6543]

    [27]

    Hutchinson J W 1970 Proc. R. Soc. Lond. A 319 247

    [28]

    Turner P A, Christodoulou N, Tomé C N 1995 Int. J. Plast. 11 251

    [29]

    Tenckhoff E 1988 Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy (Philadelphia: Special Technical Publication) pp19-23

    [30]

    Holt R A, Causey A R 1987 J. Nucl. Mater. 150 306

    [31]

    Wei Y L, Godfrey A, Liu W, Liu Q, Huang X, Hansen N, Winther G 2011 Scripta Mater. 65 355

    [32]

    Caillard D, Couret A 2002 Mat. Sci. Eng. A 322 108

    [33]

    Bacon D J, Vitek V 2002 Metall. Mater. Trans. A 33 721

    [34]

    Monnet G, Devincre B, Kubin L P 2004 Acta Mater. 52 4317

  • [1] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤.  , 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [2] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强.  , 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [3] 詹霞, JoeKelleher, 高建波, 马艳玲, 初铭强, 张书彦, 张鹏, SanjooramPaddea, 贡志锋, 侯晓东. 英国散裂中子源工程材料原位加载衍射实验高温样品环境优化设计.  , 2019, 68(13): 132901. doi: 10.7498/aps.68.20182295
    [4] 张海辉, 李晓娣, 谢耀平, 胡丽娟, 姚美意. 含Nb或Ge的锆合金表面氧吸附行为的第一性原理研究.  , 2016, 65(9): 096802. doi: 10.7498/aps.65.096802
    [5] 崔振国, 勾成俊, 侯氢, 毛莉, 周晓松. 低能中子在锆中产生的辐照损伤的计算机模拟研究.  , 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [6] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理.  , 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [7] 支启军. N=28丰中子核的形变和形状共存研究.  , 2011, 60(5): 052101. doi: 10.7498/aps.60.052101
    [8] 孙光爱, 陈波, 吴二冬, 李武会, 张功, 汪小琳, V. Ji, T. Pirling, D. Hughes. 中子衍射分析时效处理对镍基单晶高温合金相结构的影响.  , 2011, 60(8): 086102. doi: 10.7498/aps.60.086102
    [9] 孙光爱, Darren Hughes, Thilo Pirling, Vincent Ji, 陈波, 陈华, 吴二冬, 张俊. 中子衍射法研究单晶镍基高温合金热机械疲劳引起的应力和晶格错配.  , 2009, 58(4): 2549-2555. doi: 10.7498/aps.58.2549
    [10] 肖纳敏, 李殿中, 李依依. Fe-C合金中形变诱导动态相变的蒙特卡罗模拟.  , 2009, 58(13): 169-S176. doi: 10.7498/aps.58.169
    [11] 郝小鹏, 王宝义, 于润升, 魏 龙. 锆离子注入锆-4合金缺陷的慢正电子研究.  , 2007, 56(11): 6543-6546. doi: 10.7498/aps.56.6543
    [12] 张国英, 张 辉, 刘春明, 周永军. 钢铁材料中形变诱导相变超细化机理研究.  , 2005, 54(4): 1771-1776. doi: 10.7498/aps.54.1771
    [13] 李国强, 徐躬耦. 形变重离子光学势的自洽半经典计算.  , 1989, 38(4): 534-540. doi: 10.7498/aps.38.534
    [14] 何华春. 形变非晶合金的力学和电学性能.  , 1988, 37(8): 1368-1372. doi: 10.7498/aps.37.1368
    [15] 汪根时, 曹明中, 单辉, 陈济舟, 王俊桥. 非晶态贮氢材料锆镍合金的结构研究.  , 1987, 36(4): 518-523. doi: 10.7498/aps.36.518
    [16] 杨应昌, 何文望, 林勤, 杨继廉, 周蕙明, 朱家瑄, 曾祥欣, 张百生, 金兰. MnAlC永磁合金的中子衍射研究.  , 1983, 32(11): 1455-1459. doi: 10.7498/aps.32.1455
    [17] 钱祥荣. Fe-Si-Al合金的中子衍射研究.  , 1981, 30(7): 887-894. doi: 10.7498/aps.30.887
    [18] 许政一. 静电场作用下KDP和TGS单晶中子衍射增强现象的物理机理.  , 1978, 27(6): 700-709. doi: 10.7498/aps.27.700
    [19] 陆挺, 阮景辉, 李竹起, 萨本豪, 董秀芳. 氢化锆中氢的热中子散射总截面.  , 1975, 24(3): 210-214. doi: 10.7498/aps.24.210
    [20] 杜光庭, 何开元, 陈煜廉. 用中子衍射方法研究钒对50%铁-钴合金长程有序的影响.  , 1965, 21(6): 1304-1307. doi: 10.7498/aps.21.1304
计量
  • 文章访问数:  5475
  • PDF下载量:  504
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-08
  • 修回日期:  2014-07-05
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map