Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interference effect in the photodetachment from H- ion in a few-cycle laser pulse

Chen Jian-Hong Zheng Xiao-Ping Zhang Zheng-Rong Wu Xue-Yong

Citation:

Interference effect in the photodetachment from H- ion in a few-cycle laser pulse

Chen Jian-Hong, Zheng Xiao-Ping, Zhang Zheng-Rong, Wu Xue-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We theoretically study the electron detachment of negative hydrogen ions in a three-cycle linearly polarized laser field with a wavelength of 2150 nm in the context of the strong field approximation (SFA). The numerical integration and the saddle-point (SP) methods are both used in our calculations. The results show that both the energy spectra and the momentum spectra of the photoelectrons detached from negative hydrogen ions, obtained from these two methods, accord very well with each other for the laser intensities of 1.31011 W/cm2 and 6.51011 W/cm2, respectively. It is found that there is an obvious stripe-like structure along the vertical direction of the momentum spectra when the laser intensity is 6.51011 W/cm2. To explore the main origin which leads to the specific structures of the momentum spectra, we divide the interferences of the electronic wave packets emitted at different times during the laser pulse into the intra-cycle interference and the inter-cycle interference based on the SP method. Inter-cycle interference arises from the coherent superposition of electron wave packets released at complex times during different optical cycles, whereas intra-cycle interference comes from the coherent superposition of electron packets released in the same optical cycle. It is found that when only considering the inter-cycle interference, the main structures of the momentum spectra accord well with the above-threshold detachment (ATD) rings, which indicates that the inter-cycle interference corresponds to ATD rings of the photoelectron spectrum. But when only considering the intra-cycle interference, there are stripe-like structures with left-right asymmetry along the vertical direction of the momentum spectra. So the main structures of the momentum spectra of the photoelectrons are attributed to the interplay of the intra-and inter-cycle interferences. In addition, to intuitively explain the reason why the momentum spectra depend on the intensity of the laser field, we analyze the influence of the intensity of the laser field on the inter-cycle interference of quantum wave packets. It is found that the phase difference of the inter-cycle interference depends on the intensity of the laser field, which may lead to the difference among the momentum spectra of the photoelectrons at different laser intensities. Moreover, the influences of the intra-and inter-cycle interferences on the energy spectrum of the photoelectrons are also analyzed. It is found that the main oscillatory patterns and the peak positions of the energy spectra are mainly determined by the inter-cycle interference. Finally, the effects of the duration of laser pulse on the intra-and inter-cycle interferences are discussed. It seems that the main structures of the momentum spectra accord well with the ATD rings in multi-cycle laser pulses. So it is concluded that in multi-cycle laser pulses, the inter-cycle interference dominates while the intra-cycle interference is suppressed. The work in this paper is meaningful for further understanding the quantum interference effect and the optical control of the laser-induced photodetachment of negative ions.
      Corresponding author: Chen Jian-Hong, chenyuwen1982@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264036, 11465016, 11164012, 11464026), the Science and Technology Project of Lanzhou Science and Technology of Bureau, China (Grant No. 2012-2-105), and the Doctoral Scientific Research Foundation of Lanzhou City University, China.
    [1]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117

    [2]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [3]

    DiMauro L F, Agostini P 1995 Adv. At. Mol. Opt. Phys. 35 79

    [4]

    Becker W, Grasbon F, Kopold R, Miloević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35

    [5]

    Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011

    [6]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [7]

    Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D, Geusic M E 1987 Phys. Rev. Lett. 59 1092

    [8]

    Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum Press) pp367-369

    [9]

    Rudenko A, Zrost K, Schrter C D, Jesus V L B, Feuerstein B, Moshammer R, Ullrich J 2004 J. Phys. B 37 L407

    [10]

    Arbo D G, Yoshida S, Persson E, Dimitriou K I, Burgdorfer J 2006 Phys. Rev. Lett. 96 143003

    [11]

    Quan W, Lin Z. Z, Wu M Y, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [12]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010 Phys. Rev. Lett. 105 253002

    [13]

    Liu C P, Hatsagortsyan K Z 2010 Phys. Rev. Lett. 105 113003

    [14]

    Liu Y, Liu X, Deng Y, Wu C, Jiang H, Gong Q H 2010 Phys. Rev. Lett. 106 073004

    [15]

    Lin Z Y, Wu M Y, Quan W, Liu X J, Chen J, Cheng Y 2014 Chin. Phys. B 23 023201

    [16]

    Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 233003

    [17]

    Xin G G, Ye D F, Zhao Q, Liu J 2011 Acta Phys. Sin. 60 093204 (in Chinese) [辛国国, 叶地发, 赵清, 刘杰 2011 60 093204]

    [18]

    Hao X L, Li W D, Liu J, Chen J 2012 Chin. Phys. B 21 083304

    [19]

    Lindner F, Schatzel M G, Walther H, Baltuka A, Goulielmakis E, Krausz F, Miloević D B, Bauer D, Becker W, Paulus G G 2005 Phys. Rev. Lett. 95 040401

    [20]

    Xie X, Roither S, Kartashov D, Persson E, Arb D G, Zhang L, Grfe S, Schffler M S, Burgdrfer J, Baltuka A, Kitzler M 2012 Phys. Rev. Lett. 108 193004

    [21]

    Gopal R, Simeonidis K, Moshammer R, Ergler T, Drr M, Kurka M, Khnel K U, Tschuch S, Schrter C D, Bauer D, Ullrich J, Rudenko A, Herrwerth O, Uphues T, Schultze M, Goulielmakis E, Uiberacker M, Lezius M, Kling M F 2009 Phys. Rev. Lett. 103 053001

    [22]

    Arbo D G, Ishikawa K L, Schiessl K, Persson E, Burgdorfer J 2010 Phys. Rev. A 81 021403

    [23]

    Guo Z J, Chen Z J, Zhou X X 2014 Chin. Phys. B 23 043201

    [24]

    Song L W, Li C, Wang D, Xu C H, Leng Y X, Li R X 2011 Acta Phys. Sin. 60 093204 (in Chinese) [宋立伟, 李闯, 王丁, 许灿华, 冷雨欣, 李儒新 2011 60 093204]

    [25]

    Ge Y C, He H P 2014 Chin. Phys. B 23 074207

    [26]

    Diao H H, Zheng Y H, Zhong Y, Zeng Z N, Ge X C, Li C, Li R X, Xu Z Z 2014 Chin. Phys. B 23 104210

    [27]

    Reichle R, Helm H, Kiyan I Y 2001 Phys. Rev. Lett. 87 243001

    [28]

    Kiyan I Y, Helm H 2003 Phys. Rev. Lett. 90 183001

    [29]

    Bergues B, Ansari Z, Hanstorp D, Kiyan I Y 2007 Phys. Rev. A 75 063415

    [30]

    Bergues B, Kiyan I Y 2008 Phys. Rev. Lett. 100 143004

    [31]

    Zhou X X, Chen Z J, Morishita T, Le A T, Lin C D 2008 Phys. Rev. A 77 053410

    [32]

    Gribakin G F, Kuchiev M Y 1997 Phys. Rev. A 55 3760

    [33]

    Shearer S F C, Smyth M C, Gribakin G F 2011 Phys. Rev. A 84 033409

    [34]

    Shearer S F C, Addis C R J 2012 Phys. Rev. A 85 063409

    [35]

    Shearer S F C, Monteith M R 2013 Phys. Rev. A 88 033415

    [36]

    Morishita T, Le A T, Chen Z J, Lin C D 2008 Phys. Rev. Lett. 100 013903

    [37]

    Huismans Y, Rouźee A, Gijsbertsen A, Logman P S W M, Lpine F, Cauchy C, Zamith S, Stodolna A S, Jungmann J H, Bakker J M, Berden G, Redlich B, van der Meer A F G, Schafer K J, Vrakking M J J 2013 Phys. Rev. A 87 033413

    [38]

    Landau L D, Lifshitz E M 1965 Quantum Mechanics. Nonrelativistic Theory (Oxford: Pergamon Press) pp297-299

    [39]

    Yan T M, Bauer D 2012 Phys. Rev. A 86 053403

    [40]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipe (3rd Ed.): The Art of Scientific Computing (London: Cambridge Press)

  • [1]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117

    [2]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [3]

    DiMauro L F, Agostini P 1995 Adv. At. Mol. Opt. Phys. 35 79

    [4]

    Becker W, Grasbon F, Kopold R, Miloević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35

    [5]

    Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011

    [6]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [7]

    Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D, Geusic M E 1987 Phys. Rev. Lett. 59 1092

    [8]

    Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum Press) pp367-369

    [9]

    Rudenko A, Zrost K, Schrter C D, Jesus V L B, Feuerstein B, Moshammer R, Ullrich J 2004 J. Phys. B 37 L407

    [10]

    Arbo D G, Yoshida S, Persson E, Dimitriou K I, Burgdorfer J 2006 Phys. Rev. Lett. 96 143003

    [11]

    Quan W, Lin Z. Z, Wu M Y, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [12]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010 Phys. Rev. Lett. 105 253002

    [13]

    Liu C P, Hatsagortsyan K Z 2010 Phys. Rev. Lett. 105 113003

    [14]

    Liu Y, Liu X, Deng Y, Wu C, Jiang H, Gong Q H 2010 Phys. Rev. Lett. 106 073004

    [15]

    Lin Z Y, Wu M Y, Quan W, Liu X J, Chen J, Cheng Y 2014 Chin. Phys. B 23 023201

    [16]

    Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 233003

    [17]

    Xin G G, Ye D F, Zhao Q, Liu J 2011 Acta Phys. Sin. 60 093204 (in Chinese) [辛国国, 叶地发, 赵清, 刘杰 2011 60 093204]

    [18]

    Hao X L, Li W D, Liu J, Chen J 2012 Chin. Phys. B 21 083304

    [19]

    Lindner F, Schatzel M G, Walther H, Baltuka A, Goulielmakis E, Krausz F, Miloević D B, Bauer D, Becker W, Paulus G G 2005 Phys. Rev. Lett. 95 040401

    [20]

    Xie X, Roither S, Kartashov D, Persson E, Arb D G, Zhang L, Grfe S, Schffler M S, Burgdrfer J, Baltuka A, Kitzler M 2012 Phys. Rev. Lett. 108 193004

    [21]

    Gopal R, Simeonidis K, Moshammer R, Ergler T, Drr M, Kurka M, Khnel K U, Tschuch S, Schrter C D, Bauer D, Ullrich J, Rudenko A, Herrwerth O, Uphues T, Schultze M, Goulielmakis E, Uiberacker M, Lezius M, Kling M F 2009 Phys. Rev. Lett. 103 053001

    [22]

    Arbo D G, Ishikawa K L, Schiessl K, Persson E, Burgdorfer J 2010 Phys. Rev. A 81 021403

    [23]

    Guo Z J, Chen Z J, Zhou X X 2014 Chin. Phys. B 23 043201

    [24]

    Song L W, Li C, Wang D, Xu C H, Leng Y X, Li R X 2011 Acta Phys. Sin. 60 093204 (in Chinese) [宋立伟, 李闯, 王丁, 许灿华, 冷雨欣, 李儒新 2011 60 093204]

    [25]

    Ge Y C, He H P 2014 Chin. Phys. B 23 074207

    [26]

    Diao H H, Zheng Y H, Zhong Y, Zeng Z N, Ge X C, Li C, Li R X, Xu Z Z 2014 Chin. Phys. B 23 104210

    [27]

    Reichle R, Helm H, Kiyan I Y 2001 Phys. Rev. Lett. 87 243001

    [28]

    Kiyan I Y, Helm H 2003 Phys. Rev. Lett. 90 183001

    [29]

    Bergues B, Ansari Z, Hanstorp D, Kiyan I Y 2007 Phys. Rev. A 75 063415

    [30]

    Bergues B, Kiyan I Y 2008 Phys. Rev. Lett. 100 143004

    [31]

    Zhou X X, Chen Z J, Morishita T, Le A T, Lin C D 2008 Phys. Rev. A 77 053410

    [32]

    Gribakin G F, Kuchiev M Y 1997 Phys. Rev. A 55 3760

    [33]

    Shearer S F C, Smyth M C, Gribakin G F 2011 Phys. Rev. A 84 033409

    [34]

    Shearer S F C, Addis C R J 2012 Phys. Rev. A 85 063409

    [35]

    Shearer S F C, Monteith M R 2013 Phys. Rev. A 88 033415

    [36]

    Morishita T, Le A T, Chen Z J, Lin C D 2008 Phys. Rev. Lett. 100 013903

    [37]

    Huismans Y, Rouźee A, Gijsbertsen A, Logman P S W M, Lpine F, Cauchy C, Zamith S, Stodolna A S, Jungmann J H, Bakker J M, Berden G, Redlich B, van der Meer A F G, Schafer K J, Vrakking M J J 2013 Phys. Rev. A 87 033413

    [38]

    Landau L D, Lifshitz E M 1965 Quantum Mechanics. Nonrelativistic Theory (Oxford: Pergamon Press) pp297-299

    [39]

    Yan T M, Bauer D 2012 Phys. Rev. A 86 053403

    [40]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipe (3rd Ed.): The Art of Scientific Computing (London: Cambridge Press)

  • [1] Xue Yan-Ru, Tian Peng-Fei, Jin Wa, Zhao Neng, Jin Yun, Bi Wei-Hong. Superimposed long period gratings based mode converter in few-mode fiber. Acta Physica Sinica, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [2] Wang Ru, Wang Xiang-Xian, Yang Hua, Ye Song. Theoretical investigation of adjustable period sub-wavelength grating inscribed by TE0 waveguide modes interference lithography. Acta Physica Sinica, 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [3] Yang Dan-Qing, Wang Li, Wang Xin-Long. Research on far-field enhanced imaging based on negative reflection of periodic structure. Acta Physica Sinica, 2015, 64(5): 054301. doi: 10.7498/aps.64.054301
    [4] Chen Xiao-Jun, Zhang Zi-Li, Ge Hui-Liang. Fabricating three-dimensional periodic micro-structure with planar defects via a single exposure. Acta Physica Sinica, 2012, 61(17): 174211. doi: 10.7498/aps.61.174211
    [5] Du Hai-Wei, Chen Min, Zhang Kai-Yun, Sheng Zheng-Ming, Zhang Jie. Ionization currents and terahertz emission from the interaction of few-cycle laser pulses with gas targets. Acta Physica Sinica, 2012, 61(17): 174205. doi: 10.7498/aps.61.174205
    [6] Yang Ying-Ying, Zhang Yong-Liang, Zhao Zhen-Sheng, Duan Xuan-Ming. Broad-bandwidth and ultrafast electromagnetic response of coupled bimetal nanoantennas in few-cycle laser applications. Acta Physica Sinica, 2012, 61(1): 014207. doi: 10.7498/aps.61.014207
    [7] Pan Hui-Ling, Li Peng-Cheng, Zhou Xiao-Xin. Single attosecond pulse generated by atom exposed to two laser pulses with the same color and half cycle pulses. Acta Physica Sinica, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [8] Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Single attosecond pulse generated by model helium atom exposed to the combined field of an intense few-cycle chirped laser pulse and a half cycle pulse. Acta Physica Sinica, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [9] Wang Shan-Shan, Wang De-Hua, Tang Tian-Tian, Huang Kai-Yun. Influence of laser pulse on the photodetachment of H- ion near a metal surface. Acta Physica Sinica, 2011, 60(5): 053402. doi: 10.7498/aps.60.053402
    [10] Xiong Ping-Xin, Jia Xin, Jia Tian-Qing, Deng Li, Feng Dong-Hai, Sun Zhen-Rong, Xu Zhi-Zhan. Two-dimensional complex nano-micro patterning on GaP and ZnSe surface created by the interference of three femtosecond laser beams. Acta Physica Sinica, 2010, 59(1): 311-316. doi: 10.7498/aps.59.311
    [11] Lu Hong, Qin Li, Bao Jing-Dong. Nonergodicity of Brownian motion in a periodic potential. Acta Physica Sinica, 2009, 58(12): 8127-8133. doi: 10.7498/aps.58.8127
    [12] Yao Yao, Fang Zhong-Hui, Zhou Jiang, Li Wei, Ma Zhong-Yuan, Xu Jun, Huang Xin-Fan, Chen Kun-Ji, Yasuyuki Miyamoto, Shunri Oda. One-dimensional periodic nanocrystalline silicon arrays made by pulsed laser interference crystallization. Acta Physica Sinica, 2008, 57(8): 4960-4965. doi: 10.7498/aps.57.4960
    [13] Zhang Peng, Song Yan-Rong, Zhang Zhi-Gang. Thomson scattering with few-cycle laser pulses. Acta Physica Sinica, 2006, 55(12): 6208-6213. doi: 10.7498/aps.55.6208
    [14] Li De-Sheng, Zhang Hong-Qing. The new doubly-periodic solutions for nonlinear coupled scalar field equations( Ⅱ). Acta Physica Sinica, 2003, 52(10): 2379-2385. doi: 10.7498/aps.52.2379
    [15] FANG MAO-FA, LIU XIANG. PERIODIC ENTANGLEMENT BETWEEN THE INTERNAL AND EXTERANL DEGREE OF FREEDOM OF A TRAPPED ION IN A STANDING WAVE LASER. Acta Physica Sinica, 2001, 50(12): 2363-2368. doi: 10.7498/aps.50.2363
    [16] CHEN CHENG, SUN WEI. A SELF-CONSISTENT KINETICS MODEL OF CuBr LASER WITH HYDROGEN ADDITIVES. Acta Physica Sinica, 1995, 44(11): 1734-1746. doi: 10.7498/aps.44.1734
    [17] ZHANG YU-MEI. MASTER EQUATION OF A SPIN IN PERIODIC FIELD AND THE STEADY STATE. Acta Physica Sinica, 1993, 42(1): 118-127. doi: 10.7498/aps.42.118
    [18] TUNG LIN-SHU. THE STABILITY OF ELECTRON BEAM VIA THE PERIODIC FIELDS. Acta Physica Sinica, 1964, 20(8): 761-776. doi: 10.7498/aps.20.761
    [19] CHEN CHIEN-POU. THE IMAGE-FORMING CHARACTERISTICS OF PERIODIC FIELD LENSES. Acta Physica Sinica, 1962, 18(10): 514-526. doi: 10.7498/aps.18.514
    [20] HO KUO-CHU. PERIODIC FOCUSING OF HIGH CURRENT ELECTRON BEAMS. Acta Physica Sinica, 1958, 14(5): 376-392. doi: 10.7498/aps.14.376
Metrics
  • Abstract views:  6324
  • PDF Downloads:  199
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2015
  • Accepted Date:  30 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map