-
Using the closed orbit theory and the formulas of double-pulse laser pulse photodetachment cross section of H- ion near a metal surface, we calculated the laser pulse photodetachment cross section of this system. The results suggest that for the double-pulse laser, if the pulse width is much longer than the particular closed orbit period, the contribution of that closed orbit to the photodetachment cross section is very small. If the pulse width is shorter or can be compared with the particular closed orbit period,the contribution of that closed orbit to the photodetachment cross section is reduced. The cross section depends not only on the pulse width, but also on the time delay and the relative phase of the two pulses. For certain relative phase between the two pulses, the photodetachment cross section is increased; while for other relative phases, the photodetachment cross section is reduced. Therefore, we can use the pulse laser to control the photodetachment process of H- near a metal surface. We hope our results will be helpful for experimental research of photodetachment of negativeion influenced by pulse laser near surfaces.
-
Keywords:
- laser pulse /
- photodetachment cross section /
- metal surface /
- closed orbit theory
[1] Bryantetal H C 1987 Phys. Rev. Lett. 58 2412
[2] Du M L, Delos J B 1988 Phys. Rev. A 38 1896
[3] Peters A D, Jaffe C, Delos J B 1997 Phys. Rev. A 56 331
[4] Peters A D, Delos J B 1993 Phys. Rev. A 47 3020
[5] Liu Z Y, Wang D H 1997 Phys. Rev. A 55 4605
[6] Du M L 2006 Eur. Phys. J. D 38 533
[7] Yang G C, Zheng Y Z, X X Chi 2006 J. Phys. B 39 1855
[8] Wang D H, Yu Y J 2008 Chin. Phys. B 17 1231
[9] Afaq A, Du M L 2007 J. Phys. B 40 1309
[10] Rui K K, Yang G C 2009 Surf. Sci. 603 632
[11] Zhao H J, Du M L 2009 Phys. Rev. A 79 023408
[12] Yang C B, Du M L 2010 J. Phys. B 43 035002
[13] Noordam L D,Duncan D I, Gallagher T F 1992 Phys. Rev. A 45 4734
[14] Du M L 1995 Phys. Rev. A 52 1143
[15] Wang Q L, Starace A F 1995 Phys. Rev. A 51 1260
[16] Du M L 2003 Commun. Thero. Phys. 39 705
[17] Peng L Y, Wang Q L, Starace A F 2006 Phys. Rev. A 74 023402
[18] Ganesan K, Taylor K T 1996 J. Phys. B 29 1293
[19] Huang K Y,Wang D H 2010 Acta. Phys. Sin. 59 933 (in Chinese)[黄凯云、 王德华 2010 59 933]
[20] Huang K Y, Wang D H 2010 Chin. Phys. B 19 063402
-
[1] Bryantetal H C 1987 Phys. Rev. Lett. 58 2412
[2] Du M L, Delos J B 1988 Phys. Rev. A 38 1896
[3] Peters A D, Jaffe C, Delos J B 1997 Phys. Rev. A 56 331
[4] Peters A D, Delos J B 1993 Phys. Rev. A 47 3020
[5] Liu Z Y, Wang D H 1997 Phys. Rev. A 55 4605
[6] Du M L 2006 Eur. Phys. J. D 38 533
[7] Yang G C, Zheng Y Z, X X Chi 2006 J. Phys. B 39 1855
[8] Wang D H, Yu Y J 2008 Chin. Phys. B 17 1231
[9] Afaq A, Du M L 2007 J. Phys. B 40 1309
[10] Rui K K, Yang G C 2009 Surf. Sci. 603 632
[11] Zhao H J, Du M L 2009 Phys. Rev. A 79 023408
[12] Yang C B, Du M L 2010 J. Phys. B 43 035002
[13] Noordam L D,Duncan D I, Gallagher T F 1992 Phys. Rev. A 45 4734
[14] Du M L 1995 Phys. Rev. A 52 1143
[15] Wang Q L, Starace A F 1995 Phys. Rev. A 51 1260
[16] Du M L 2003 Commun. Thero. Phys. 39 705
[17] Peng L Y, Wang Q L, Starace A F 2006 Phys. Rev. A 74 023402
[18] Ganesan K, Taylor K T 1996 J. Phys. B 29 1293
[19] Huang K Y,Wang D H 2010 Acta. Phys. Sin. 59 933 (in Chinese)[黄凯云、 王德华 2010 59 933]
[20] Huang K Y, Wang D H 2010 Chin. Phys. B 19 063402
Catalog
Metrics
- Abstract views: 8544
- PDF Downloads: 647
- Cited By: 0