Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Signal component extraction method based on polynomial chirp Fourier transform

Lu Wen-Long Xie Jun-Wei Wang He-Ming Sheng Chuan

Citation:

Signal component extraction method based on polynomial chirp Fourier transform

Lu Wen-Long, Xie Jun-Wei, Wang He-Ming, Sheng Chuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As frequency modulated (FM) signals widely exist in the natural world as well as in different artificial applications, it is of great practical significance to explore the ways to extract such signal components in the complex and noisy environment. To extract one component from the noisy multicomponent signal effectively, a component extraction method based on polynomial chirp Fourier transform (PCFT) is presented in this paper. First, the physical meanings of Fourier transform (FT) and fractional Fourier transform (FRFT) are analyzed and their internal relations are expounded from the perspective of signal energy accumulation. Essentially, the FT accumulates signal energy along the time-frequency beelines parallel to the time axis and obtains an energy-concentrated spectrum from the narrow-band stationary signals whose frequency does not change, whereas it fails to process non-stationary signals with changeable frequencies. By rotating the time-frequency axis, the FRFT changes the energy accumulation mode of the signal in the old time-frequency plane and achieves a more concentrated spectrum for the linear frequency modulated (LFM) signal, but with larger error or even invalidation when dealing with nonlinear frequency modulated (NLFM) signal. Using FT and FRFT, in this paper we attempt to improve the energy accumulation mode of the conventional transform method and propose the PCFT. In this transform, the beeline families in the traditional transform, independent of time (or v) axes, are replaced by a family of polynomial chirping curves in the time-frequency plane. These polynomial chirping curves are capable of approaching more closely to the instantaneous frequency curve of FM signal so as to obtain a more concentrated transform spectrum and thereby extend the application of PCFT from LFM signal to NLFM signal. When selecting the polynomial chirping curve, we build up a nonlinear optimization model guided by the principle of energy spectrum concentration and in this way convert the problem of determining the polynomial curve families into the one of optimizing the polynomial parameters. Then particle swarm optimization algorithm is employed to search for the optimal polynomial parameters so as to concentrate the energy of one component in the new transform domain, i.e., the polynomial chirp Fourier domain. After doing that, each component is separated into its concentrated spectrum with a narrow-band filter and reconstructed with the inverse PCFT. Moreover, to extract components from a noisy multicomponent signal successfully, an iteration involving parameter estimation, PCFT, filter and recovery is introduced. To verify the effectiveness of the PCFT-based method, a series of examples, including simulated and real-world signals, is chosen for simulations and experiments. The experimental results indicate that compared with FT and FRFT, the proposed method overcomes the shortcoming of distributed energy spectrum for NLFM components in the traditional transforms and obtains a concentrated energy spectrum in the polynomial chirp Fourier domain, therefore realizing component separation and time-frequency characteristic extraction. The PCFT-based method not only has the capability of dealing with the extraction of LFM components, but also performs well in the separation of crossed NLFM components, and with little extraction error.
      Corresponding author: Lu Wen-Long, youranqixia521@126.com
    [1]

    Ba J 2010 Sci. Sin: Phys. Mech. Astron. 40 1398 (in Chinese) [巴晶 2010 中国科学: 物理学 力学 天文学 40 1398]

    [2]

    Liu X Y, Pei L Q, Wang Y, Zhang S M, Gao H L, Dai Y D 2011 Chin. Phys. B 20 047401

    [3]

    Dugnol B, Fernandez C, Galiano G, Velasco J 2008 Signal Process. 88 1817

    [4]

    Li S M 2005 Chin. J. Appl. Mech. 22 579 (in Chinese) [李舜酩 2005 应用力学学报 22 579]

    [5]

    Yang Y, Dong X J, Peng Z K, Zhang W M, Meng G 2015 J. Sound Vib. 335 350

    [6]

    Lei P, Wang J, Guo P, Cai D D 2011 AEU-Int. J. Electron. Commun. 65 806

    [7]

    Xu L J, Yang Y X, Yang L 2015 Acta Phys. Sin. 64 174304 (in Chinese) [徐灵基, 杨益新, 杨龙 2015 64 174304]

    [8]

    Kuang W T, Morris A S 2002 IEEE Trans. Instrum. Meas. 51 440

    [9]

    Gonzlez D, Bialasiewicz J T, Balcells J, Gago J 2008 IEEE Trans. Ind. Electron. 55 3167

    [10]

    Alarcon V C, Daviu J A A, Guasp M R 2012 Electr. Pow. Syst. Res. 91 28

    [11]

    Shi P, Cao G W, Li Y P 2010 Chin. Phys. B 19 074201

    [12]

    Barkat B, Boashash B 1999 IEEE Trans. Signal Process. 47 2480

    [13]

    Andria G, Savino M 1996 IEEE Trans. Instrum. Meas. 45 818

    [14]

    Yin B Q, He Y G, Li B, Zuo L, Yuan L F 2015 Chin. J. Electron. 24 115

    [15]

    Wang L, Xu L P, Zhang H, Luo N 2013 Acta Phys. Sin. 62 139702 (in Chinese) [王璐, 许录平, 张华, 罗楠 2013 62 139702]

    [16]

    Wang X L, Wang W B 2015 Chin. Phys. B 24 080203

    [17]

    Chen B X, Li M, Zhang A J 2007 Acta Phys. Sin. 56 4535 (in Chinese) [陈宝信, 李明, 张爱菊 2007 56 4535]

    [18]

    Huang Y, Liu F, Wang Z Z, Xiang C W, Deng B 2013 Acta Aeronaut. Et Astronaut. Sin. 34 846 (in Chinese) [黄宇, 刘锋, 王泽众, 向崇文, 邓兵 2013 航空学报 34 846]

    [19]

    Xu G L, Wang X T, Xu X G 2010 Chin. Phys. B 19 014203

    [20]

    Zou H X 2002 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [邹红星 2002 博士学位论文 (北京: 清华大学)]

    [21]

    Namias V 1980 J. Inst. Maths. Appl. 25 241

    [22]

    Yang Y, Peng Z K, Dong X J 2014 IEEE Trans. Instrum. Meas. 63 3169

    [23]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303

    [24]

    Janeiro F M, Ramos P M 2009 IEEE Trans. Instrum. Meas. 58 383

    [25]

    Deng W Y, Zheng Q H, Chen L, Xu X B 2010 Chin. J. Comput. 33 279 (in Chinese) [邓万宇, 郑庆华, 陈琳, 许学斌 2010 计算机学报 32 279]

    [26]

    Nguyen H A, Guo H, Low K S 2011 IEEE Trans. Instrum. Meas. 60 3619

    [27]

    Liu H H, Liu Y H 2012 Chin. Phys. B 21 026102

    [28]

    Bi G, Zeng Y 2007 J. Electron. Inform. Technol. 29 1399 (in Chinese) [毕岗, 曾宇 2007 电子与信息学报 29 1399]

  • [1]

    Ba J 2010 Sci. Sin: Phys. Mech. Astron. 40 1398 (in Chinese) [巴晶 2010 中国科学: 物理学 力学 天文学 40 1398]

    [2]

    Liu X Y, Pei L Q, Wang Y, Zhang S M, Gao H L, Dai Y D 2011 Chin. Phys. B 20 047401

    [3]

    Dugnol B, Fernandez C, Galiano G, Velasco J 2008 Signal Process. 88 1817

    [4]

    Li S M 2005 Chin. J. Appl. Mech. 22 579 (in Chinese) [李舜酩 2005 应用力学学报 22 579]

    [5]

    Yang Y, Dong X J, Peng Z K, Zhang W M, Meng G 2015 J. Sound Vib. 335 350

    [6]

    Lei P, Wang J, Guo P, Cai D D 2011 AEU-Int. J. Electron. Commun. 65 806

    [7]

    Xu L J, Yang Y X, Yang L 2015 Acta Phys. Sin. 64 174304 (in Chinese) [徐灵基, 杨益新, 杨龙 2015 64 174304]

    [8]

    Kuang W T, Morris A S 2002 IEEE Trans. Instrum. Meas. 51 440

    [9]

    Gonzlez D, Bialasiewicz J T, Balcells J, Gago J 2008 IEEE Trans. Ind. Electron. 55 3167

    [10]

    Alarcon V C, Daviu J A A, Guasp M R 2012 Electr. Pow. Syst. Res. 91 28

    [11]

    Shi P, Cao G W, Li Y P 2010 Chin. Phys. B 19 074201

    [12]

    Barkat B, Boashash B 1999 IEEE Trans. Signal Process. 47 2480

    [13]

    Andria G, Savino M 1996 IEEE Trans. Instrum. Meas. 45 818

    [14]

    Yin B Q, He Y G, Li B, Zuo L, Yuan L F 2015 Chin. J. Electron. 24 115

    [15]

    Wang L, Xu L P, Zhang H, Luo N 2013 Acta Phys. Sin. 62 139702 (in Chinese) [王璐, 许录平, 张华, 罗楠 2013 62 139702]

    [16]

    Wang X L, Wang W B 2015 Chin. Phys. B 24 080203

    [17]

    Chen B X, Li M, Zhang A J 2007 Acta Phys. Sin. 56 4535 (in Chinese) [陈宝信, 李明, 张爱菊 2007 56 4535]

    [18]

    Huang Y, Liu F, Wang Z Z, Xiang C W, Deng B 2013 Acta Aeronaut. Et Astronaut. Sin. 34 846 (in Chinese) [黄宇, 刘锋, 王泽众, 向崇文, 邓兵 2013 航空学报 34 846]

    [19]

    Xu G L, Wang X T, Xu X G 2010 Chin. Phys. B 19 014203

    [20]

    Zou H X 2002 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [邹红星 2002 博士学位论文 (北京: 清华大学)]

    [21]

    Namias V 1980 J. Inst. Maths. Appl. 25 241

    [22]

    Yang Y, Peng Z K, Dong X J 2014 IEEE Trans. Instrum. Meas. 63 3169

    [23]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303

    [24]

    Janeiro F M, Ramos P M 2009 IEEE Trans. Instrum. Meas. 58 383

    [25]

    Deng W Y, Zheng Q H, Chen L, Xu X B 2010 Chin. J. Comput. 33 279 (in Chinese) [邓万宇, 郑庆华, 陈琳, 许学斌 2010 计算机学报 32 279]

    [26]

    Nguyen H A, Guo H, Low K S 2011 IEEE Trans. Instrum. Meas. 60 3619

    [27]

    Liu H H, Liu Y H 2012 Chin. Phys. B 21 026102

    [28]

    Bi G, Zeng Y 2007 J. Electron. Inform. Technol. 29 1399 (in Chinese) [毕岗, 曾宇 2007 电子与信息学报 29 1399]

  • [1] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Improved parameter optimization method for measurement device independent protocol. Acta Physica Sinica, 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [2] Zhou Pei, Zhang Ren-Heng, Zhu Jian, Li Nian-Qiang. High-performance linear frequency-modulated signal generation based on optically injected semiconductor laser with dual-loop optoelectronic feedback. Acta Physica Sinica, 2022, 71(21): 214204. doi: 10.7498/aps.71.20221308
    [3] Li Xin-Peng, Cao Rui-Jie, Li Ming, Guo Ge-Pu, Li Yu-Zhi, Ma Qing-Yu. Super-resolution acoustic focusing based on the particle swarm optimization of super-oscillation. Acta Physica Sinica, 2022, 71(20): 204304. doi: 10.7498/aps.71.20220898
    [4] Gong Tao, Yang Jian-Hua, Shan Zhen, Wang Zhi-Le, Liu Hou-Guang. Optimal resonance response of nonlinear system excited by nonlinear frequency modulation signal. Acta Physica Sinica, 2022, 71(5): 050503. doi: 10.7498/aps.71.20211959
    [5] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [6] Li Ming-Fei, Yuan Zi-Hao, Liu Yuan-Xing, Deng Yi-Cheng, Wang Xue-Feng. Comparison between optimal configuration algorithms of fiber phased array. Acta Physica Sinica, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [7] Xing Hong-Yan, Zhang Qiang, Xu Wei. Hybrid algorithm for weak signal detection in chaotic sea clutter. Acta Physica Sinica, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [8] Chen Ying, Wang Wen-Yue, Yu Na. Improvement of the filtering performance of a heterostructure photonic crystal ring resonator using PSO algorithm. Acta Physica Sinica, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [9] Liu Rui-Lan, Wang Xu-Liang, Tang Chao. Identification for hole transporting properties of NPB based on particle swarm optimization algorithm. Acta Physica Sinica, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [10] Peng Hao, Zhong Su-Chuan, Tu Zhe, Ma Hong. Stochastic resonance of over-damped bistable system driven by chirp signal and Gaussian white noise. Acta Physica Sinica, 2013, 62(8): 080501. doi: 10.7498/aps.62.080501
    [11] Liu Tun-Dong, Chen Jun-Ren, Hong Wu-Peng, Shao Gui-Fang, Wang Ting-Na, Zheng Ji-Wen, Wen Yu-Hua. Particle swarm optimization investigation of stable structures of Pt-Pd alloy nanoparticles. Acta Physica Sinica, 2013, 62(19): 193601. doi: 10.7498/aps.62.193601
    [12] Yang Jun, Sun Qiu-Ye, Yang Dong-Sheng. Sum-of-square-based impulsive control for chaotic system based on polynomial model. Acta Physica Sinica, 2012, 61(20): 200511. doi: 10.7498/aps.61.200511
    [13] Zheng Shi-Lian, Yang Xiao-Niu. Parameter adaptation in green cognitive radio. Acta Physica Sinica, 2012, 61(14): 148402. doi: 10.7498/aps.61.148402
    [14] Long Wen, Jiao Jian-Jun, Long Zu-Qiang. Control of chaos solely based on PSO-LSSVM without usiing an analytical model. Acta Physica Sinica, 2011, 60(11): 110506. doi: 10.7498/aps.60.110506
    [15] Jiang Fei, Liu Zhong, Hu Wen, Bao Bo-Cheng. Dynamical design and analysis of continuous chaos frequency modulation signal. Acta Physica Sinica, 2010, 59(1): 116-122. doi: 10.7498/aps.59.116
    [16] Wang Xiao-Feng, Xue Hong-Jun, Si Shou-Kui, Yao Yue-Ting. Mixture control of chaotic system using particle swarm optimization algorithms and OGY method. Acta Physica Sinica, 2009, 58(6): 3729-3733. doi: 10.7498/aps.58.3729
    [17] Zhao Zhi-Jin, Xu Shi-Yu, Zheng Shi-Lian, Yang Xiao-Niu. Cognitive radio decision engine based on binary particle swarm optimization. Acta Physica Sinica, 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [18] Zhang Liang-Ying, Jin Guo-Xiang, Cao Li. Stochastic resonance of frequency modulated signals in a linear model of single-mode laser. Acta Physica Sinica, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [19] Zhao Hai-Quan, Zhang Jia-Shu, Zeng Xiang-Ping. Adaptive neural Legendre orthogonal polynomial nonlinear channel equalization for chaos-based communications systems. Acta Physica Sinica, 2007, 56(4): 1975-1982. doi: 10.7498/aps.56.1975
    [20] Yan Hua, Wei Ping, Xiao Xian-Ci. An adaptive approach based on Bernstein polynomial to predict chaotic time series. Acta Physica Sinica, 2007, 56(9): 5111-5118. doi: 10.7498/aps.56.5111
Metrics
  • Abstract views:  6788
  • PDF Downloads:  320
  • Cited By: 0
Publishing process
  • Received Date:  25 November 2015
  • Accepted Date:  10 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map