-
Recently, ternary bulk-heterojunction (BHJ) polymer solar cells (PSCs) occur as an attractive strategy with simple fabrication technology to extend the spectrum of wide bandgap polymers into the near infrared region by adding a narrow bandgap sensitizer. In this paper, a series of cells including binary BHJ-PSCs with P3HT:PCBM as the active layer (control cell) and ternary BHJ-PSCs with different PTB7-Th doping concentrations are fabricated to investigate the effect of PTB7-Th on the performance of PSC. The short-circuit current density (Jsc) and fill factor (FF) of the ternary PSCs are simultaneously improved by adding a small amount of PTB7-Th into P3HT:PCBM. The champion photoelectric conversion efficient of ternary PSCs (with 15 wt% PTB7-Th) is 3.71%, which is larger than 2.71% of the control cell. In a ternary device, the absorption region shows a distinct red-shift and the relative absorption intensity from 650 nm to 800 nm is gradually enhanced with the incrtease of PTB7-Th doping concentration. The increased photon harvesting in the solar spectral range results in an increased short-circuit current density. However, despite the fact that the photoluminescence (PL) spectrum of P3HT has a large overlap with the absorption spectra of PTB7-Th, which makes it possible for Frster resonance energy to transfer between P3HT and PTB7-Th, the PL intensity of P3HT at 650 nm is quenched with the increase of PTB7-Th doping concentration while the photoluminescence remains almost the same in the long wavelength region, which suggests that the main mechanism between PTB7-Th and P3HT is photo-induced electron transfer from P3HT to PTB7-Th (hole transfer from PTB7-Th to P3HT), not energy transfer. The PSCs with P3HT:PTB7-Th (1:1) as an active layer display a large Jsc compared with the P3HT-based one. When the concentration of PTB7-Th decreases and the concentration of P3HT is unchanged (P3HT:PTB7-Th 1 : 0.5), the Jsc can be further enhanced. The increased Jsc value of P3HT: PTB7-Th (1:0.5) PSCs confirms that the photo-generated excitons can be dissociated into free charge carriers at the P3HT:PTB7-Th interface and reinforce the charge transfer between P3HT and PTB7-Th. In P3HT:PCBM binary organic solar cell, the photo-generated excitons only can be directly dissociated into free charge carriers at the P3HT:PCBM interface and then transported to the respective electrodes, while incorporating PTB7-Th, the interaction between P3HT and PTB7-Th also makes the photo-generated excitons dissociated at the interface of P3HT:PTB7-Th, and at the interface of PTB7-Th:PCBM. The increasing of excitons dissociated leads to a higher FF. The present study is the first report on utilizing PTB7-Th in P3HT:PCBM PSC.
-
Keywords:
- ternary polymer solar cells /
- PTB7-Th /
- exciton dissociation
[1] Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227
[2] He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174
[3] Chen C C, Chang W H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y 2014 Adv. Mater. 26 5670
[4] Li C, Xue W, Han C F, Qian L, Zhao S L, Yu Z N, Zhang T, Wang L X 2015 Acta Phys. Sin. 64 088401 (in Chinese) [李畅, 薛唯, 韩长峰, 钱磊, 赵谡玲, 喻志农, 章婷, 王玲雪 2015 64 088401]
[5] Fan X, Zhao S L, Huang Q Y, Yang Q Q, Gong W, Xu Z 2014 J. Lumin. 152 112
[6] Yang Q Q, Zhao S L, Zhang F J, Yan G, Kong C, Fan X, Zhang Y F, Xu X R 2012 Chin. Phys. B 21 128402
[7] Park E K, Kim J H, Ji I A, Choi H M, Kim J H, Lim K T, Bang J H, Kim Y S 2014 Microelectron. Eng. 119 169
[8] Zhang K, Hu Z Y, Huang L K, Xu J, Zhang J, Zhu Y J 2015 Acta Phys. Sin. 64 178801 (in Chinese) [张科, 胡子阳, 黄利克, 徐洁, 张京, 诸跃进 2015 64 178801]
[9] Søndergaard R R, Hösel M, Krebs F C 2013 J. Polym. Sci. Part B: Polym. Phys. 51 16
[10] Huang J S, Goh T, Li X, Sfeir M Y, Bielinski E A, Tomasulo S, Lee M L, Hazari N, Taylor A D 2013 Nat. Photon. 7 479
[11] Yang Y M, Chen W, Dou L, Chang W H, Duan H S, Bob B, Li G, Yang Y 2015 Nat. Photon. 9 190
[12] Gupta V, Bharti V, Kumar M, Chand S, Heeger A J 2015 Adv. Mater. 27 4398
[13] Lu L, Chen W, Xu T, Yu L 2015 Nat. Commun. 6 7327
[14] Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716
[15] Thompson B C, Frechet J M 2008 Angew. Chem. Int. Ed. 47 58
[16] Wu J L, Chen F C, Hsiao Y S, Chien F C, Chen P, Kuo C H, Huang M H, Hsu C S 2011 ACS Nano 5 959
-
[1] Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227
[2] He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174
[3] Chen C C, Chang W H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y 2014 Adv. Mater. 26 5670
[4] Li C, Xue W, Han C F, Qian L, Zhao S L, Yu Z N, Zhang T, Wang L X 2015 Acta Phys. Sin. 64 088401 (in Chinese) [李畅, 薛唯, 韩长峰, 钱磊, 赵谡玲, 喻志农, 章婷, 王玲雪 2015 64 088401]
[5] Fan X, Zhao S L, Huang Q Y, Yang Q Q, Gong W, Xu Z 2014 J. Lumin. 152 112
[6] Yang Q Q, Zhao S L, Zhang F J, Yan G, Kong C, Fan X, Zhang Y F, Xu X R 2012 Chin. Phys. B 21 128402
[7] Park E K, Kim J H, Ji I A, Choi H M, Kim J H, Lim K T, Bang J H, Kim Y S 2014 Microelectron. Eng. 119 169
[8] Zhang K, Hu Z Y, Huang L K, Xu J, Zhang J, Zhu Y J 2015 Acta Phys. Sin. 64 178801 (in Chinese) [张科, 胡子阳, 黄利克, 徐洁, 张京, 诸跃进 2015 64 178801]
[9] Søndergaard R R, Hösel M, Krebs F C 2013 J. Polym. Sci. Part B: Polym. Phys. 51 16
[10] Huang J S, Goh T, Li X, Sfeir M Y, Bielinski E A, Tomasulo S, Lee M L, Hazari N, Taylor A D 2013 Nat. Photon. 7 479
[11] Yang Y M, Chen W, Dou L, Chang W H, Duan H S, Bob B, Li G, Yang Y 2015 Nat. Photon. 9 190
[12] Gupta V, Bharti V, Kumar M, Chand S, Heeger A J 2015 Adv. Mater. 27 4398
[13] Lu L, Chen W, Xu T, Yu L 2015 Nat. Commun. 6 7327
[14] Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716
[15] Thompson B C, Frechet J M 2008 Angew. Chem. Int. Ed. 47 58
[16] Wu J L, Chen F C, Hsiao Y S, Chien F C, Chen P, Kuo C H, Huang M H, Hsu C S 2011 ACS Nano 5 959
Catalog
Metrics
- Abstract views: 8799
- PDF Downloads: 476
- Cited By: 0