Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of the influences of surface topography of deposited layer on arc shape and state in arc based additive forming

Zhou Xiang-Man Zhang Hai-Ou Wang Gui-Lan Bai Xing-Wang

Citation:

Simulation of the influences of surface topography of deposited layer on arc shape and state in arc based additive forming

Zhou Xiang-Man, Zhang Hai-Ou, Wang Gui-Lan, Bai Xing-Wang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The stacking deposition and the overlapping deposition are usually employed in arc based additive forming process, which will result in different surface topographies of deposited layer. Consequently, the shape and state, heat and mass transfer of electric arc will be affected by the surface topography of deposited layer. A three-dimensional numerical model of electric arc based on magnetic fluid dynamics, local thermodynamic equilibrium and optical thin assumption for arc based additive forming process with pure argon shielding gas is presented. Simultaneously, four kinds of deposited layer model with different surface topographies are established, which are the deposited layer models of planar substrate, namely the substrate without weld bead, deposited layer model of single-pass single-layer, deposited layer model of single-pass two-layers, and deposited layer model of overlapping. The numerical calculation is performed on condition that deposition current and the distance between the electrodes are constant. And the simulation results include the profile of electric arc, corresponding temperature field, flow field, current density, electromagnetic force, and the arc pressure distribution. The temperature field of planar substrate accords well with other researcher's experimental result, and the profiles of electric arc are in good agreement with images captured by high-speed camera. Surface topography of deposited layer plays a decisive role in determining the profile of electric arc under the same process conditions. The comparison of evolvement among the distributions on specified paths shows that the electric arc of planar substrate has higher temperature, velocity, current density and pressure in the arc center, arising from completely symmetrical deposition layer model and smaller contact area between the arc and the substrate; the number of layers of single-pass multi-layer deposited layer has little influence on various parameters of electric arc, but because the deposited layer height changes, the temperature and pressure on the outside of deposited layer have small deviation; asymmetric arc profile will form when the overlapping deposition is performed. There is a relatively low temperature in the arc center, resulting from larger contact area between the arc and the surface of deposited layer. In addition, the distributions of current density, electromagnetic force and pressure deflect to the deposited layer. The above conclusions can provide a theoretical basis for basic research and process decision of arc based additive forming, and it can also provide the parameters for the subsequent weld pool dynamics and metal transfer simulation.
      Corresponding author: Wang Gui-Lan, zhouxman@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51175203, 51374113, 51505210).
    [1]

    Zhang H, Wang X P, Wang G L, Zhang Y 2013 Rap. Proto. J. 19 387

    [2]

    Xu G, Hu J, Tsai H L 2012 J. Manuf. Sci. Eng. 134 031001

    [3]

    Wu C S, Chen M A, Lu Y F 2005 Meas. Sci. Technol. 16 2459

    [4]

    Chang Y L, Liu X L, Lu L, Babkin A S, Lee B Y, Gao F 2014 I Int. J. Adv. Manuf Technol. 70 1543

    [5]

    Hu J, Tsai H L 2007 Int. J. Heat Mass Transfer 50 833

    [6]

    Hu J, Tsai H L 2007 Int. J. Heat Mass Transfer 50 808

    [7]

    Rao Z H, Hu J, Liao S M, Tsai H L 2010 Int. J. Heat Mass Transfer 53 5707

    [8]

    Rao Z H, Hu J, Liao S M Tsai H L 2010 Int. J. Heat Mass Transfer 53 5722

    [9]

    Rao Z H, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 44902

    [10]

    10 Murphy A B 2013 Sci. Technol. Weld. Join. 18 32

    [11]

    Murphy A B 2011 J. Phys. D: Appl. Phys. 44 194009

    [12]

    Lu F, Wang H P, Murphy A B, Carlson B E 2014 J. Heat Mass Transfer 68 215

    [13]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J 2009 J. Phys. D: Appl. Phys. 42 194006

    [14]

    Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 2460

    [15]

    Fan D, Huang Z C, Huang J K, Wang X X, Huang Y 2015 Acta Phys. Sin. 64 108102 (in Chinese) [樊丁, 黄自成, 黄健康, 王新鑫, 黄勇 2015 64 108102]

    [16]

    Yin X Q, Gou J J, Zhang J X, Sun J T 2012 J. Phys. D: Appl. Phys. 45 285203

    [17]

    Shi Y, Guo C B, Huang J K, Fan D 2011 Acta Phys. Sin. 60 048102 (in Chinese) [石玗, 郭朝博, 黄健康, 樊丁 2011 60 048102]

    [18]

    Lowke J J, Kovitya P, Schmidt H P 1992 J. Phys. D: Appl. Phys. 25 1600

    [19]

    Lowke J J, Morrow R, Haidar J 1997 J. Phys. D: Appl. Phys. 30 2033

    [20]

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101 (in Chinese) [王新鑫, 樊丁, 黄健康, 黄勇 2013 62 228101]

    [21]

    Kong F R, Zhang H O, Wang G L 2009 Acta. Meatll. Sin. 45 415 (in Chinese) [孔凡荣, 张海鸥, 王桂兰 2009 金属学报 45 415]

    [22]

    Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434008

    [23]

    Rao Z H, Zhou J, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 054905

    [24]

    Lowke J J, Tanaka M 2006 J. Phys. D: Appl. Phys. 39 3634

    [25]

    Jian X, Wu C S 2015 J. Heat Mass Transfer 84 839

    [26]

    Jnsson P G, Eagar T W, Szekely J 1995 Metall. Mater. Trans. B 26 383

    [27]

    Murphy A B, Tanaka M, Tashiro S, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205

    [28]

    Farmer A J D, Haddad G N, Kovitya P 1988 J. Phys. D: Appl. Phys. 21 432

  • [1]

    Zhang H, Wang X P, Wang G L, Zhang Y 2013 Rap. Proto. J. 19 387

    [2]

    Xu G, Hu J, Tsai H L 2012 J. Manuf. Sci. Eng. 134 031001

    [3]

    Wu C S, Chen M A, Lu Y F 2005 Meas. Sci. Technol. 16 2459

    [4]

    Chang Y L, Liu X L, Lu L, Babkin A S, Lee B Y, Gao F 2014 I Int. J. Adv. Manuf Technol. 70 1543

    [5]

    Hu J, Tsai H L 2007 Int. J. Heat Mass Transfer 50 833

    [6]

    Hu J, Tsai H L 2007 Int. J. Heat Mass Transfer 50 808

    [7]

    Rao Z H, Hu J, Liao S M, Tsai H L 2010 Int. J. Heat Mass Transfer 53 5707

    [8]

    Rao Z H, Hu J, Liao S M Tsai H L 2010 Int. J. Heat Mass Transfer 53 5722

    [9]

    Rao Z H, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 44902

    [10]

    10 Murphy A B 2013 Sci. Technol. Weld. Join. 18 32

    [11]

    Murphy A B 2011 J. Phys. D: Appl. Phys. 44 194009

    [12]

    Lu F, Wang H P, Murphy A B, Carlson B E 2014 J. Heat Mass Transfer 68 215

    [13]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J 2009 J. Phys. D: Appl. Phys. 42 194006

    [14]

    Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 2460

    [15]

    Fan D, Huang Z C, Huang J K, Wang X X, Huang Y 2015 Acta Phys. Sin. 64 108102 (in Chinese) [樊丁, 黄自成, 黄健康, 王新鑫, 黄勇 2015 64 108102]

    [16]

    Yin X Q, Gou J J, Zhang J X, Sun J T 2012 J. Phys. D: Appl. Phys. 45 285203

    [17]

    Shi Y, Guo C B, Huang J K, Fan D 2011 Acta Phys. Sin. 60 048102 (in Chinese) [石玗, 郭朝博, 黄健康, 樊丁 2011 60 048102]

    [18]

    Lowke J J, Kovitya P, Schmidt H P 1992 J. Phys. D: Appl. Phys. 25 1600

    [19]

    Lowke J J, Morrow R, Haidar J 1997 J. Phys. D: Appl. Phys. 30 2033

    [20]

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101 (in Chinese) [王新鑫, 樊丁, 黄健康, 黄勇 2013 62 228101]

    [21]

    Kong F R, Zhang H O, Wang G L 2009 Acta. Meatll. Sin. 45 415 (in Chinese) [孔凡荣, 张海鸥, 王桂兰 2009 金属学报 45 415]

    [22]

    Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434008

    [23]

    Rao Z H, Zhou J, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 054905

    [24]

    Lowke J J, Tanaka M 2006 J. Phys. D: Appl. Phys. 39 3634

    [25]

    Jian X, Wu C S 2015 J. Heat Mass Transfer 84 839

    [26]

    Jnsson P G, Eagar T W, Szekely J 1995 Metall. Mater. Trans. B 26 383

    [27]

    Murphy A B, Tanaka M, Tashiro S, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205

    [28]

    Farmer A J D, Haddad G N, Kovitya P 1988 J. Phys. D: Appl. Phys. 21 432

  • [1] Lin Qian, Xie Pu-Chu, Hu Jian-Bo, Zhang Feng-Guo, Wang Pei, Wang Yong-Gang. Numerical simulation on dynamic damage evolution of high pure copper with different grain sizes. Acta Physica Sinica, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [2] Wang Ru-Jia, Wu Shi-Ping, Chen Wei. Propagation of thermoviscoelastic wave in inhomogeneous alloy melt with varying temperature. Acta Physica Sinica, 2019, 68(4): 048101. doi: 10.7498/aps.68.20181923
    [3] Wang Xin-Xin, Chi Lu-Xin, Wu Guang-Feng, Li Chun-Tian, Fan Ding. Numerical simulation of mixture gas arc of Ar-O2. Acta Physica Sinica, 2019, 68(17): 178102. doi: 10.7498/aps.68.20190416
    [4] Zhou Jian-Hong, Tong Bao-Hong, Wang Wei, Su Jia-Lei. Numerical simulation of deformation and rupture process of bubble in an oil film impacted by an oil droplet. Acta Physica Sinica, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [5] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [6] Jiang Yong, He Shao-Bo, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Lü Hai-Bing, Liu Chun-Ming, Xiang Xia, Qiu Rong, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao. Experimental investigation and numerical simulation of defect elimination by CO2 laser raster scanning on fused silica. Acta Physica Sinica, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [7] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [8] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [9] Guo Chao-Bo, Shi Yu, Fan Ding, Huang Jian-Kang. Numerical simulation of pulsed current tungesteninert gas (TIG) welding arc. Acta Physica Sinica, 2011, 60(4): 048102. doi: 10.7498/aps.60.048102
    [10] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [11] Hua Jin-Rong, Zu Xiao-Tao, Li Li, Xiang Xia, Chen Meng, Jiang Xiao-Dong, Yuan Xiao-Dong, Zheng Wan-Guo. Numerical simulation of light intensity distribution in the vicinity of three-dimensional Hertzian conical scratch on fused silica subsurface. Acta Physica Sinica, 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [12] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [13] Lu Shan-Ping, Dong Wen-Chao, Li Dian-Zhong, Li Yi-Yi. Numerical simulation of arc properties and their effects on the weld shape. Acta Physica Sinica, 2009, 58(13): 94-S103. doi: 10.7498/aps.58.94
    [14] Geng Shao-Fei, Tang De-Li, Zhao Jie, Qiu Xiao-Ming. Particle-in-cell simulation of a cylindrical Hall anode layer plasma accelerator. Acta Physica Sinica, 2009, 58(8): 5520-5525. doi: 10.7498/aps.58.5520
    [15] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Y u Guo-Yang, Guo Wen-Kang, Xu Ping. Study of the characteristic of D.C.arc plasma torch*. Acta Physica Sinica, 2004, 53(11): 3806-3813. doi: 10.7498/aps.53.3806
    [16] Zou Xiu, Gong Ye, Liu Jin-Yuan, Gong Ji-Quan. The effect of external magnetic field, current and arc column radiuson the arc helical instability. Acta Physica Sinica, 2004, 53(3): 824-828. doi: 10.7498/aps.53.824
    [17] Qin Ying, Wang Xiao-Gang, Dong Chuang, Hao Sheng-Zhi, Liu Yue, Zou Jian-Xin, Wu Ai-Min, Guan Qing-Feng. Temperature field and formation of crater on the surface induced by high curren t pulsed electron beam bombardment. Acta Physica Sinica, 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
    [18] Zi Bing-Tao, Yao Ke-Fu, Xu Guang-Ming, Cui Jian-Zhong. Numerical simulation of liguid alloy flow field during solidification under applied pulsed magnetic fields. Acta Physica Sinica, 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
    [19] Gong Ji-Quan, Gong Ye, Liu Jin-Yuan, Zhang Peng-Yun. . Acta Physica Sinica, 2002, 51(2): 291-295. doi: 10.7498/aps.51.291
    [20] YU YAN-MEI, YANG GEN-CANG, ZHAO DA-WEN, Lü YI-LI, A. KARMA, C. BECKERMANN. NUMERICAL SIMULATION OF DENDRITIC GROWTH IN UNDERCOOLED MELT USING PHASE-FIELD APPROACH. Acta Physica Sinica, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
Metrics
  • Abstract views:  6782
  • PDF Downloads:  318
  • Cited By: 0
Publishing process
  • Received Date:  01 September 2015
  • Accepted Date:  15 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map