Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of mixture gas arc of Ar-O2

Wang Xin-Xin Chi Lu-Xin Wu Guang-Feng Li Chun-Tian Fan Ding

Citation:

Numerical simulation of mixture gas arc of Ar-O2

Wang Xin-Xin, Chi Lu-Xin, Wu Guang-Feng, Li Chun-Tian, Fan Ding
PDF
HTML
Get Citation
  • Mixture gas arcs are used extensively in welding manufacturing. A two-dimensional steady mathematical model for Ar-O2 mixture gas arc is developed to understand further the heat and mass transfer of the mixture gas arc. The model is based on the assumption of local thermodynamic equilibrium, and the thermodynamic parameters and transport coefficients are dependent on both the temperature and the oxygen content. In the present model, the diffusion between the argon species and oxygen species is depicted by the approach of the combined diffusion coefficient, i. e. the mixture gas arc is simplified into two different species, and the diffusion between them is formulated by combined ordinary diffusion coefficient and combined temperature diffusion coefficient; the oxygen distribution and its influence on the temperature and flow field of the arc are investigated for two different current conditions. It is shown that the oxygen species presents significant non-uniform distribution for argon gas mixed with 5% oxygen; the oxygen content is higher than that in mixed shielding gas in the regions close to the electrodes and arc axis, while its content is lower than that of the mixed shielding gas in other regions. For high current, oxygen concentrates more to the flat anode, while it concentrates more to tungsten cathode for low current. For both cases, oxygen content is inhomogeneous in the region 0.1 mm above the anode. The 5% oxygen mixed in argon constricts the arc plasma to some extent and thus raises the arc temperature as well as the plasma flow velocity.
      Corresponding author: Wang Xin-Xin, wang@cqut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51705054) and the the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJ1600903, KJ1709197).
    [1]

    Murphy A B, Tanaka M, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205Google Scholar

    [2]

    Pires I, Quintino L, Miranda R M 2007 Mater. Design 28 1623Google Scholar

    [3]

    Lones L A, Eagar T W, Lang J H 1998 J. Phys. D: Appl. Phys. 31 107Google Scholar

    [4]

    Lu S P, Fujii H, Nogi K, Sato T 2007 Sci. Technol. Weld. Joi. 12 689Google Scholar

    [5]

    Palmer T A, DebRoy T 1998 Sci. Technol. Weld. Joi. 3 190Google Scholar

    [6]

    Fujii H, Sato T, Lu S P, Nogi K 2008 Mater. Sci. Eng. 495 29

    [7]

    Church J G, Imaizumi H 1990 IIW/IIS Doc. XII-1199-90

    [8]

    张建晓, 樊丁, 黄勇 2017 焊接学报 38 47Google Scholar

    Zhang J X, Fan, D, Huang Y 2017 Trans. China Weld. Inst. 38 47Google Scholar

    [9]

    Wang X, Fan D, Huang J, Huang Y 2014 J. Phys. D: Appl. Phys. 47 275202Google Scholar

    [10]

    Hsu K C, Mtemadi K, Pfender E 1983 J. Appl. Phys. 54 1293

    [11]

    Fan D, Ushio M, Matsuda F 1986 Trans. JWRI 15 1

    [12]

    Lowke J J, Morrow R, Haidar J 1997 J. Phys. D: Appl. Phys. 30 2033Google Scholar

    [13]

    Kim W H, Fan H G, Na S J 1997 Metall. Mater. Trans. B 28B 679

    [14]

    Choo R T C, Szekely J, Westhoff R C 1992 Metall. Mater. Trans. B 23B 57

    [15]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S , Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 194006Google Scholar

    [16]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2003 Plasma Chem. Plasma Process. 23 585Google Scholar

    [17]

    袁行球, 李辉, 赵太泽, 王飞, 俞国扬, 郭文康, 须平 2004 53 3806Google Scholar

    Yuan X Q, Li H, Zhao T Z, Wang F, Yu G Y, Guo W K, Xu P 2004 Acta Phys. Sin. 53 3806Google Scholar

    [18]

    石玗, 郭朝博, 黄健康, 樊丁 2011 60 048102Google Scholar

    Shi Y, Guo C B, Huang J K, Fan D 2011 Acta Phys. Sin. 60 048102Google Scholar

    [19]

    王新鑫, 樊丁, 黄健康, 黄勇 2013 62 228101Google Scholar

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101Google Scholar

    [20]

    Bini R, Monno M, Boulos M I 2006 J. Phys. D: Appl. Phys. 39 3253Google Scholar

    [21]

    Hsu K C, Pfender E 1983 J. Appl. Phys. 54 4359Google Scholar

    [22]

    Konishi K, Shigeta M, Tanaka M, Murata A, Murata T, Murphy A B 2017 Weld. World 61 197Google Scholar

    [23]

    黄勇, 刘林, 王新鑫, 陆肃中 2017 焊接学报 39 6Google Scholar

    Huang Y, Liu L, Wang X X, Lu S Z 2017 Trans. China Weld. Inst. 39 6Google Scholar

    [24]

    Baeva M, Kozakov R, Gorchakov S, Uhrlandt D 2012 Plasma Sources Sci. Technol. 21 055027Google Scholar

    [25]

    Baeva M 2017 Plasma Chem. Plasma Process. 37 513Google Scholar

    [26]

    钱海洋, 吴彬 2011 核聚变与等离子体物理 31 186

    Qian H Y, Wu B 2011 Nucl. Fusion Plasma Phys. 31 186

    [27]

    Li H P, Benilov M S 2007 J. Phys. D: Appl. Phys. 40 2010Google Scholar

    [28]

    Wei F Z, Wang H X, Murphy A B, Sun W P, Liu Y 2013 J. Phys. D: Appl. Phys. 46 505205Google Scholar

    [29]

    Zhang X N, Li H P, Murphy A B, Xia W D 2013 Phys. Plasmas 20 033508Google Scholar

    [30]

    Li H P, Zhang X N, Xia W D 2013 Phys. Plasmas 20 033509Google Scholar

    [31]

    Zhao G Y, Dassanayake M, Etemadi K 1990 Plasma Chem. Plasma Process. 10 87Google Scholar

    [32]

    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy A B, Lowke J J 2010 J. Phys. D: Appl. Phys. 43 434009Google Scholar

    [33]

    Schnick M, Füssel U, Hertel M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 022001Google Scholar

    [34]

    Wang X, Luo Y, Wu G, Chi L, Fan D 2018 Plasma Chem. Plasma Process. 38 1095Google Scholar

    [35]

    菅晓霞, 武传松 2016 金属学报 52 1467

    Jian X X, Wu C S 2016 Acta Metall. Sin. 52 1467

    [36]

    Savas A, Ceyhun V 2012 Comp. Mater. Sci. 51 53

    [37]

    Wang L L, Lu F G, Wang H P, Murphy A B, Tang X H 2014 J. Phys. D: Appl. Phys. 47 465202Google Scholar

    [38]

    Rao Z H, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 044902Google Scholar

    [39]

    Murphy A B 1994 Phys. Rev. Lett. 73 1797Google Scholar

    [40]

    Murphy A B 1997 Phys. Rev. E 55 7473

    [41]

    Murphy A B, Hiraoka K 2000 J. Phys. D: Appl. Phys. 33 2183Google Scholar

    [42]

    Bitharas I, McPherson N A, McGhie W, Roy D, Moore A J 2018 J. Mater. Process. Tech. 255 451Google Scholar

    [43]

    黄勇, 陆肃中, 王新鑫, 李慧 2016 焊接学报 37 36

    Huang Y, Lu S Z, Wang X X, Li H 2016 China Weld. Inst. 37 36

    [44]

    Chen J, Xu H, Wei X, Lv H, Song Z, Chen Z 2017 Vacuum 145 77Google Scholar

    [45]

    杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 66 185202Google Scholar

    Yang Y, Tang C S, Zhao Y F, Yu Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202Google Scholar

    [46]

    Murphy A B 1993 Phys. Rev. E 48 3594Google Scholar

    [47]

    Murphy A B 1993 J. Chem. Phys. 99 1340Google Scholar

    [48]

    查普曼, 考林 著 (刘大有, 王伯懿 译) 1985 非均匀气体的数学理论 (第三版) (北京: 科学出版社) 第178−191, 343−344页

    Chapman S, Cowling T G (translated by Liu D Y, Wang B Y 1970 The Mathematical Theory of Non-Uniform Gases (3rd ed.) (Beijing: Science Press) pp178−191, 343−344 (in Chinese)

    [49]

    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922Google Scholar

    [50]

    Murphy A B 1998 J. Phys. D: Appl. Phys. 31 3383Google Scholar

    [51]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451Google Scholar

    [52]

    Cram L E 1985 J. Phys. D: Appl. Phys. 18 40

    [53]

    Choquet I, Shirvan J A, Nilsson H 2012 J. Phys. D: Appl. Phys. 45 205203Google Scholar

    [54]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2002 Metall. Mater. Trans. A 33 2043Google Scholar

    [55]

    Wang X, Huang J, Huang Y, Fan D, Guo Y 2017 Appl. Therm. Eng. 113 27Google Scholar

    [56]

    陆善平, 董文超, 李殿中, 李依依 2009 58 94

    Lu S, Dong W, Li D, Li Y 2009 Acta Phys. Sin. 58 94

    [57]

    黄勇, 王艳磊, 张治国 2014 光谱学与光谱分析 34 1168Google Scholar

    Huang Y, Wang Y L, Zhang Z G 2014 Spectrsc. Spect. Anal. 34 1168Google Scholar

  • 图 1  扩散系数 (a) 组合普通扩散系数$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^x} $; (b) 组合温度扩散系数$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^T} $

    Figure 1.  Diffusion coefficients: (a) Combined ordinary diffusion coefficient$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^x} $; (b) combined temperature diffusion coefficient$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^T} $

    图 2  求解域示意图

    Figure 2.  Schematic of the computation domain.

    图 3  混合气体电弧的温度场和氧组分质量分数分布 (a) 200 A; (b) 80 A

    Figure 3.  Temperature field and oxygen mass fraction of Ar-O2 mixture gas arc for different current: (a) 200 A; (b) 80 A

    图 4  距离钨极尖端不同位置氧组分质量分数的径向分布 (a) 200 A; (b) 80 A

    Figure 4.  Radial distributions of the mass fraction of oxygen at different distances below the cathode: (a) 200 A; (b) 80 A.

    图 5  混合气体电弧的流场 (a) 200 A; (b) 80 A

    Figure 5.  Flow fiels of mixture gas arc:(a) 200 A; (b) 80 A.

    图 6  混合气体电弧阳极表面0.1 mm处氧组分的分布

    Figure 6.  Oxygen mass fraction of mixture gas arc 0.1 mm above the anode.

    图 7  氧组分对电弧温度场的影响 (a) 200 A; (b) 80 A

    Figure 7.  Effect of oxygen on the arc temperature field: (a) 200 A; (b) 80 A.

    图 8  氧组分对电弧流场的影响 (a) 200 A; (b) 80 A

    Figure 8.  Effect of oxygen on the arc flow field: (a) 200 A; (b) 80 A.

    图 9  200 A电流TIG电弧的温度场对比

    Figure 9.  Comparison of the calculated temperature fiels of TIG arc for 200 A current.

    图 10  距离阴极尖端不同位置氧组分径向分布的计算结果对比 (a) Murphy的结果[40]; (b) 本文的结果

    Figure 10.  Comparison of radial distribution of oxygen calculated at different distances below the cathode: (a) Murphy’s results[40]; (b) the present model’s results.

    表 1  边界条件

    Table 1.  Boundary conditions.

    边界v/m·s–1T/KΦ/VA/Wb·m–1YA
    AB1000jz$\partial$A/$\partial$n=0
    BCvgiv500$\partial$Φ/$\partial$n=0$\partial$A/$\partial$n=00.05
    CD$\partial$v/$\partial$n=0500$\partial$Φ/$\partial$n=0A=00.05
    DE20000$\partial$A/$\partial$n=0$\partial$YA/$\partial$n=0
    EA$\partial$v/$\partial$n=0$\partial$T/$\partial$n=0$\partial$Φ/$\partial$n=0$\partial$A/$\partial$n=0$\partial$YA/$\partial$n=0
    BFNon-slip(12)式CoupledCoupledYAgiv
    DownLoad: CSV
    Baidu
  • [1]

    Murphy A B, Tanaka M, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205Google Scholar

    [2]

    Pires I, Quintino L, Miranda R M 2007 Mater. Design 28 1623Google Scholar

    [3]

    Lones L A, Eagar T W, Lang J H 1998 J. Phys. D: Appl. Phys. 31 107Google Scholar

    [4]

    Lu S P, Fujii H, Nogi K, Sato T 2007 Sci. Technol. Weld. Joi. 12 689Google Scholar

    [5]

    Palmer T A, DebRoy T 1998 Sci. Technol. Weld. Joi. 3 190Google Scholar

    [6]

    Fujii H, Sato T, Lu S P, Nogi K 2008 Mater. Sci. Eng. 495 29

    [7]

    Church J G, Imaizumi H 1990 IIW/IIS Doc. XII-1199-90

    [8]

    张建晓, 樊丁, 黄勇 2017 焊接学报 38 47Google Scholar

    Zhang J X, Fan, D, Huang Y 2017 Trans. China Weld. Inst. 38 47Google Scholar

    [9]

    Wang X, Fan D, Huang J, Huang Y 2014 J. Phys. D: Appl. Phys. 47 275202Google Scholar

    [10]

    Hsu K C, Mtemadi K, Pfender E 1983 J. Appl. Phys. 54 1293

    [11]

    Fan D, Ushio M, Matsuda F 1986 Trans. JWRI 15 1

    [12]

    Lowke J J, Morrow R, Haidar J 1997 J. Phys. D: Appl. Phys. 30 2033Google Scholar

    [13]

    Kim W H, Fan H G, Na S J 1997 Metall. Mater. Trans. B 28B 679

    [14]

    Choo R T C, Szekely J, Westhoff R C 1992 Metall. Mater. Trans. B 23B 57

    [15]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S , Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 194006Google Scholar

    [16]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2003 Plasma Chem. Plasma Process. 23 585Google Scholar

    [17]

    袁行球, 李辉, 赵太泽, 王飞, 俞国扬, 郭文康, 须平 2004 53 3806Google Scholar

    Yuan X Q, Li H, Zhao T Z, Wang F, Yu G Y, Guo W K, Xu P 2004 Acta Phys. Sin. 53 3806Google Scholar

    [18]

    石玗, 郭朝博, 黄健康, 樊丁 2011 60 048102Google Scholar

    Shi Y, Guo C B, Huang J K, Fan D 2011 Acta Phys. Sin. 60 048102Google Scholar

    [19]

    王新鑫, 樊丁, 黄健康, 黄勇 2013 62 228101Google Scholar

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101Google Scholar

    [20]

    Bini R, Monno M, Boulos M I 2006 J. Phys. D: Appl. Phys. 39 3253Google Scholar

    [21]

    Hsu K C, Pfender E 1983 J. Appl. Phys. 54 4359Google Scholar

    [22]

    Konishi K, Shigeta M, Tanaka M, Murata A, Murata T, Murphy A B 2017 Weld. World 61 197Google Scholar

    [23]

    黄勇, 刘林, 王新鑫, 陆肃中 2017 焊接学报 39 6Google Scholar

    Huang Y, Liu L, Wang X X, Lu S Z 2017 Trans. China Weld. Inst. 39 6Google Scholar

    [24]

    Baeva M, Kozakov R, Gorchakov S, Uhrlandt D 2012 Plasma Sources Sci. Technol. 21 055027Google Scholar

    [25]

    Baeva M 2017 Plasma Chem. Plasma Process. 37 513Google Scholar

    [26]

    钱海洋, 吴彬 2011 核聚变与等离子体物理 31 186

    Qian H Y, Wu B 2011 Nucl. Fusion Plasma Phys. 31 186

    [27]

    Li H P, Benilov M S 2007 J. Phys. D: Appl. Phys. 40 2010Google Scholar

    [28]

    Wei F Z, Wang H X, Murphy A B, Sun W P, Liu Y 2013 J. Phys. D: Appl. Phys. 46 505205Google Scholar

    [29]

    Zhang X N, Li H P, Murphy A B, Xia W D 2013 Phys. Plasmas 20 033508Google Scholar

    [30]

    Li H P, Zhang X N, Xia W D 2013 Phys. Plasmas 20 033509Google Scholar

    [31]

    Zhao G Y, Dassanayake M, Etemadi K 1990 Plasma Chem. Plasma Process. 10 87Google Scholar

    [32]

    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy A B, Lowke J J 2010 J. Phys. D: Appl. Phys. 43 434009Google Scholar

    [33]

    Schnick M, Füssel U, Hertel M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 022001Google Scholar

    [34]

    Wang X, Luo Y, Wu G, Chi L, Fan D 2018 Plasma Chem. Plasma Process. 38 1095Google Scholar

    [35]

    菅晓霞, 武传松 2016 金属学报 52 1467

    Jian X X, Wu C S 2016 Acta Metall. Sin. 52 1467

    [36]

    Savas A, Ceyhun V 2012 Comp. Mater. Sci. 51 53

    [37]

    Wang L L, Lu F G, Wang H P, Murphy A B, Tang X H 2014 J. Phys. D: Appl. Phys. 47 465202Google Scholar

    [38]

    Rao Z H, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 044902Google Scholar

    [39]

    Murphy A B 1994 Phys. Rev. Lett. 73 1797Google Scholar

    [40]

    Murphy A B 1997 Phys. Rev. E 55 7473

    [41]

    Murphy A B, Hiraoka K 2000 J. Phys. D: Appl. Phys. 33 2183Google Scholar

    [42]

    Bitharas I, McPherson N A, McGhie W, Roy D, Moore A J 2018 J. Mater. Process. Tech. 255 451Google Scholar

    [43]

    黄勇, 陆肃中, 王新鑫, 李慧 2016 焊接学报 37 36

    Huang Y, Lu S Z, Wang X X, Li H 2016 China Weld. Inst. 37 36

    [44]

    Chen J, Xu H, Wei X, Lv H, Song Z, Chen Z 2017 Vacuum 145 77Google Scholar

    [45]

    杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 66 185202Google Scholar

    Yang Y, Tang C S, Zhao Y F, Yu Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202Google Scholar

    [46]

    Murphy A B 1993 Phys. Rev. E 48 3594Google Scholar

    [47]

    Murphy A B 1993 J. Chem. Phys. 99 1340Google Scholar

    [48]

    查普曼, 考林 著 (刘大有, 王伯懿 译) 1985 非均匀气体的数学理论 (第三版) (北京: 科学出版社) 第178−191, 343−344页

    Chapman S, Cowling T G (translated by Liu D Y, Wang B Y 1970 The Mathematical Theory of Non-Uniform Gases (3rd ed.) (Beijing: Science Press) pp178−191, 343−344 (in Chinese)

    [49]

    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922Google Scholar

    [50]

    Murphy A B 1998 J. Phys. D: Appl. Phys. 31 3383Google Scholar

    [51]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451Google Scholar

    [52]

    Cram L E 1985 J. Phys. D: Appl. Phys. 18 40

    [53]

    Choquet I, Shirvan J A, Nilsson H 2012 J. Phys. D: Appl. Phys. 45 205203Google Scholar

    [54]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2002 Metall. Mater. Trans. A 33 2043Google Scholar

    [55]

    Wang X, Huang J, Huang Y, Fan D, Guo Y 2017 Appl. Therm. Eng. 113 27Google Scholar

    [56]

    陆善平, 董文超, 李殿中, 李依依 2009 58 94

    Lu S, Dong W, Li D, Li Y 2009 Acta Phys. Sin. 58 94

    [57]

    黄勇, 王艳磊, 张治国 2014 光谱学与光谱分析 34 1168Google Scholar

    Huang Y, Wang Y L, Zhang Z G 2014 Spectrsc. Spect. Anal. 34 1168Google Scholar

  • [1] Zou Xiong, Qi Xiao-Bo, Zhang Tao-Xian, Gao Zhang-Fan, Huang Wei-Xing. Numerical simulation of filling and evacuating process of impurity gas in target capsule of inertial confinement fusion. Acta Physica Sinica, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [2] Wang Qian-Jin, Sun Peng-Shuai, Zhang Zhi-Rong, Zhang Le-Wen, Yang Xi, Wu Bian, Pang Tao, Xia Hua, Li Qi-Yong. Separation and analysis method of overlapping absorption spectra with cross interference in gas mixture measurement. Acta Physica Sinica, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [3] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [4] Cai Ji-Xing, Guo Ming, Qu Xu, Li He, Jin Guang-Yong. Gas dynamics and combustion wave expanding velocity of laser induced plasma. Acta Physica Sinica, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [5] Zhou Xiang-Man, Zhang Hai-Ou, Wang Gui-Lan, Bai Xing-Wang. Simulation of the influences of surface topography of deposited layer on arc shape and state in arc based additive forming. Acta Physica Sinica, 2016, 65(3): 038103. doi: 10.7498/aps.65.038103
    [6] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [7] Zhao Jia-Rui, Li Yi-Fei, Ma Jing-Long, Wang Jin-Guang, Huang Kai, Han Yu-Jing, Ma Yong, Yan Wen-Chao, Li Da-Zhang, Yuan Da-Wei, Li Yu-Tong, Zhang Jie, Chen Li-Ming. Characterizations of clusters generated by pure xenon and hydrogen xenon gas mixture at room temperature. Acta Physica Sinica, 2015, 64(4): 042101. doi: 10.7498/aps.64.042101
    [8] Ning Li-Zhong, Wang Na, Yuan Zhe, Li Kai-Ji, Wang Zhuo-Yun. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture. Acta Physica Sinica, 2014, 63(10): 104401. doi: 10.7498/aps.63.104401
    [9] Bai Zhan-Guo, Li Xin-Zheng, Li Yan, Zhao Kun. Numerical analysis on multi-armed spiral patterns in gas discharge system. Acta Physica Sinica, 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [10] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [11] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [12] Du Hong-Liang, He Li-Ming, Lan Yu-Dan, Wang Feng. Influence of reduced electric field on the evolvement characteristics of plasma under conditions of N2/O2 discharge. Acta Physica Sinica, 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [13] Guo Chao-Bo, Shi Yu, Fan Ding, Huang Jian-Kang. Numerical simulation of pulsed current tungesteninert gas (TIG) welding arc. Acta Physica Sinica, 2011, 60(4): 048102. doi: 10.7498/aps.60.048102
    [14] Lan Yu-Dan, He Li-Ming, Ding Wei, Wang Feng. Evolution of H2/O2 mixture plasma under different initial temperatures. Acta Physica Sinica, 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [15] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [16] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [17] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Y u Guo-Yang, Guo Wen-Kang, Xu Ping. Study of the characteristic of D.C.arc plasma torch*. Acta Physica Sinica, 2004, 53(11): 3806-3813. doi: 10.7498/aps.53.3806
    [18] Zou Xiu, Gong Ye, Liu Jin-Yuan, Gong Ji-Quan. The effect of external magnetic field, current and arc column radiuson the arc helical instability. Acta Physica Sinica, 2004, 53(3): 824-828. doi: 10.7498/aps.53.824
    [19] Ding Bo-Jiang, Kuang Guang-Li, Liu Yue-Xiu, Shen Wei-Ci, Yu Jia-Wen, Shi Yao-Jiang. . Acta Physica Sinica, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
    [20] Gong Ji-Quan, Gong Ye, Liu Jin-Yuan, Zhang Peng-Yun. . Acta Physica Sinica, 2002, 51(2): 291-295. doi: 10.7498/aps.51.291
Metrics
  • Abstract views:  8926
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  25 March 2019
  • Accepted Date:  16 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回
Baidu
map