-
As one of the most common weathers in daily life, the rain can change the atmospheric compositions and humidity in a short time, which may cause non-ignorable attenuation in free-space quantum communication system. Besides, the absorption and scattering effects caused by raindrops can also bring huge attenuation to photon's propagation. In order to solve this burst interference caused by rain weather, optimal mean photon number per pulse and chameleon self-adaptive algorithm (CSA) are proposed based on the rainfall distribution model and decoy-state quantum key distribution. Due to the lack of producing mature ideal single photon source technology, the decoy-state protocol with highly attenuated laser becomes the most practical and most widely used quantum secure communication protocol currently. Among all the different kinds of decoy-state protocols, the vacuum+weak decoy state quantum communication secure protocol is chosen to be the basis of our research. Besides, in order to study the influence of mean photon number per signal pulse, we set the pulse ratio between signal state, decoy state and vacuum state to be fixed at 2:2:1. Since the performance of the vacuum+weak decoy state quantum communication system is closely related to the mean photon number per pulse, it is very necessary to confirm the optimal value. Combining the Weibull rainfall distribution model and Mie scattering theory, we first analyze the attenuation caused by rainfall in a free-space quantum communication system. Then the functional relationship among opt, rainfall intensity (J) and link distance (L) is built by studying the propagation of highly attenuated laser in depolarizing channel. Finally, two parameters, secure key rate and channel survival function, are chosen to evaluate the system's performance of reliability and validity. These two parameters are respectively compared between the system with and without CSA. Simulation results show that, as J=30 mm/24 h, L=30 km, the secure key generation rate rises from 210-4 up to 3.510-4 when using the CSA in the quantum communication system; as J=60 mm/24 h, L=20 km, the quantum channel survival function value increases from 0.52 to 0.63; as the quantum channel survival function value is required no lower than 0.5, the rainfall intensity in which quantum communication system can survive rises from 62 mm/24 h up to 74 mm/24 h. These results prove that there is a close relationship between opt and the channel parameters of the quantum communication system under the background of rainfall. Therefore, it is necessary for us to self-adapt the opt value by combining rainfall intensity with the CSA strategy if the reliability and survivability of free space quantum communication system are required to be improved.
[1] Hwang W Y 2003 Phys. Rev. Lett. 91 508
[2] Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nature Photonics 4 376
[3] Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185
[4] Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nature Photonics 7 387
[5] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516
[6] Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 63 240303]
[7] Tyler GA, Boyd R W 2009 Opt. Lett. 34 142
[8] Chen N, Quan D X, Pei C X, Yang H 2015 Chin. Phys. B 24 020304
[9] Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 64 150301]
[10] Hwang W Y 2003 Phys. Rev. Lett. 91 508
[11] ElliottC, Pearson D, Troxel G 2003 Acm Sigcomm Computer Communication Review 33 227
[12] Marshall J S, Langile R C, Palmer W M 1947 Journal of the Atmospheric Science 4 186
[13] Weibull W, Mech A J 1951 Journal of Applied Microelectron 28 613
[14] Mie G 1908 Ann. Phys. 25 377
[15] Liu M, Liu X G, Mou Y J 2012 Infrared and Laser Engineering 41 2136 (in Chinese) [刘敏, 刘锡国, 牟京燕 2012 红外与激光工程 41 2136]
[16] Bruss D, Faoro L, Macchiavello C 2000 Journal of Modern Optics 47 325
[17] Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quant. Inf. Comput 5 325
[18] Zhang L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 150301 [张琳, 聂敏, 刘晓慧 2013 62 150301]
[19] Liu T K, Wang J S, Liu X J, Zhan M S 2000 Acta Optica Sinica 20 1449 (in Chinese) [刘堂昆, 王继锁, 柳晓军, 詹明生 2000 光学学报 20 1449]
-
[1] Hwang W Y 2003 Phys. Rev. Lett. 91 508
[2] Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nature Photonics 4 376
[3] Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185
[4] Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nature Photonics 7 387
[5] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516
[6] Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 63 240303]
[7] Tyler GA, Boyd R W 2009 Opt. Lett. 34 142
[8] Chen N, Quan D X, Pei C X, Yang H 2015 Chin. Phys. B 24 020304
[9] Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 64 150301]
[10] Hwang W Y 2003 Phys. Rev. Lett. 91 508
[11] ElliottC, Pearson D, Troxel G 2003 Acm Sigcomm Computer Communication Review 33 227
[12] Marshall J S, Langile R C, Palmer W M 1947 Journal of the Atmospheric Science 4 186
[13] Weibull W, Mech A J 1951 Journal of Applied Microelectron 28 613
[14] Mie G 1908 Ann. Phys. 25 377
[15] Liu M, Liu X G, Mou Y J 2012 Infrared and Laser Engineering 41 2136 (in Chinese) [刘敏, 刘锡国, 牟京燕 2012 红外与激光工程 41 2136]
[16] Bruss D, Faoro L, Macchiavello C 2000 Journal of Modern Optics 47 325
[17] Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quant. Inf. Comput 5 325
[18] Zhang L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 150301 [张琳, 聂敏, 刘晓慧 2013 62 150301]
[19] Liu T K, Wang J S, Liu X J, Zhan M S 2000 Acta Optica Sinica 20 1449 (in Chinese) [刘堂昆, 王继锁, 柳晓军, 詹明生 2000 光学学报 20 1449]
Catalog
Metrics
- Abstract views: 6298
- PDF Downloads: 211
- Cited By: 0