搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于降雨率的GMF+RAIN模型构建及在台风风场反演中的应用

张亮 黄思训 钟剑 杜华栋

引用本文:
Citation:

基于降雨率的GMF+RAIN模型构建及在台风风场反演中的应用

张亮, 黄思训, 钟剑, 杜华栋

New GMF+RAIN model based on rain rate and application in typhoon wind retrieval

Zhang Liang, Huang Si-Xun, Zhong Jian, Du Hua-Dong
PDF
导出引用
  • 首先选取2006年QuikSCAT散射计扫描的3次台风个例("珊珊"、"摩羯"及"象神"),分析其获取的台风区域雷达后向散射截面值(σo)在降雨影响下的分布特征.然后依据大气辐射传输理论,考虑降雨对雷达后向散射截面值的影响,引进两个不同形式的降雨辐射传输模型(简称为SY和AMSR模型),并将这两个降雨辐射传输模型分别与NSCAT2模型函数相结合,构建了适合降雨情况的地球物理模型函数(简称为GMF+RAIN).最后,在GMF+RAIN模型的基础上,采用二维变分结合多解方案
    This paper firstly selects three typhoon cases (SHANSHAN, YAGI, XANGSANE) which occurred in 2006, and analyzes the distribution characteristic of the normalized radar cross-section (NRCS, σo), which were received by QuikSCAT scatterometer in the case of rain effect. Secondly, in order to account for the effects of rain to σo, we follow the theory of atmospheric radiation transfer and introduce two different types of rain radiation transfer models (called SY model and AMSR model, respectively), then combine these two models with NSCAT2 GMF to produce an improved GMF suitable for the case of rain effect (called GMF+RAIN). Lastly, based on this GMF+RAIN, we use the ambiguity removal method which integrates 2DVAR (two-dimensional variational assimilation) with MSS (multiple solution scheme) to retrieve the YAGI and XANGSANE typhoon wind fields which had different intensity. The new approach which combines GMF+RAIN with 2DVAR+MSS improves the result, which further verifies the effectiveness of GMF+RAIN. This new approach also makes the scatterometer data more effective and valuable for application in the research of typhoon.
    • 基金项目: 国家自然科学基金(批准号:40775023)资助的课题.
    [1]

    Bender M A, Ross R J, Tuleya R E, Kurihara Y 1993 Mon. Weather Rev. 121 2046

    [2]

    Zhou Y S, Ran L K 2010 Acta Phys. Sin. 59 1366 (in Chinese) [周玉淑、冉令坤 2010 59 1366]

    [3]

    Liu W T, Hu H, Yueh S 2000 EOS T. Am. Geophys. Un. 81 253

    [4]

    Marcos P A 2002 Ph. D. Dissertation (Barcelona:University of Barcelona)

    [5]

    Stoffelen A, Anderson D 1997 Quart. J. Roy. Meteor. Soc. 123A 491

    [6]

    Courtier P, Thepaut J N, Hollingsworth A 1994 Quart. J. Roy. Meteor. Soc. 120 1367

    [7]

    Wentz F J, Spencer R W 1998 J. Atmos. Sci. 55 1613

    [8]

    Zou J H, Lin M S, Pan D L, Chen Z H, Yang L 2009 J. Remote Sens. 13 847 (in chinese) [邹巨洪、林明森、潘德炉、陈正华、杨 乐 2009 遥感学报 13 847]

    [9]

    Nie C, Long D G 2007 IEEE Trans. Geosci. Remote Sens. 45 621

    [10]

    Liu X C, Gao T C, Qin J, Liu L 2010 Acta Phys. Sin. 59 2156 (in Chinese) [刘西川、高太长、秦 健、刘 磊 2010 59 2156]

    [11]

    Huang S X, Zhao X F, Sheng Z 2009 Chin. Phys. B 18 5084

    [12]

    Zeng L, Brown R 1998 J. Appl. Meteorol. 37 1412

    [13]

    Yueh S H, Stiles B W, Liu W T 2003 IEEE T. Geosci. Remote 41 2616

    [14]

    Nielsen S N 2007 M.S. Dissertation (Brigham:Brigham Young University)

    [15]

    Huang S X, Cai Q F, Xiang J, Zhang M 2007 Acta Phys. Sin. 56 3022 (in Chinese) [黄思训、蔡其发、项 杰、张 铭 2007 56 3022]

    [16]

    Cao X Q, Huang S X, Du H D 2008 Acta Phys. Sin. 57 1984 (in Chinese) [曹小群、黄思训、杜华栋 2008 57 1984]

    [17]

    Huang S X, Wu R S 2005 Mathematical and Physical Problems in Atmospheric Sciences (2nd Ed.) (Beijing:Chinese Meteoro- logical Press) p460 (in Chinese) [黄思训、伍荣生 2005 大气科学中的数学物理基础(第二版)(北京:气象出版社)第460页]

    [18]

    Sheng Z, Huang S X 2010 Acta Phys. Sin. 59 1734 (in Chinese) [盛 峥、黄思训 2010 59 1734]

    [19]

    Zhang L, Huang S X, Liu Y D, Zhong J 2010 Acta Phys. Sin. 59 2889 (in Chinese) [张 亮、黄思训、刘宇迪、钟 剑 2010 59 2889]

  • [1]

    Bender M A, Ross R J, Tuleya R E, Kurihara Y 1993 Mon. Weather Rev. 121 2046

    [2]

    Zhou Y S, Ran L K 2010 Acta Phys. Sin. 59 1366 (in Chinese) [周玉淑、冉令坤 2010 59 1366]

    [3]

    Liu W T, Hu H, Yueh S 2000 EOS T. Am. Geophys. Un. 81 253

    [4]

    Marcos P A 2002 Ph. D. Dissertation (Barcelona:University of Barcelona)

    [5]

    Stoffelen A, Anderson D 1997 Quart. J. Roy. Meteor. Soc. 123A 491

    [6]

    Courtier P, Thepaut J N, Hollingsworth A 1994 Quart. J. Roy. Meteor. Soc. 120 1367

    [7]

    Wentz F J, Spencer R W 1998 J. Atmos. Sci. 55 1613

    [8]

    Zou J H, Lin M S, Pan D L, Chen Z H, Yang L 2009 J. Remote Sens. 13 847 (in chinese) [邹巨洪、林明森、潘德炉、陈正华、杨 乐 2009 遥感学报 13 847]

    [9]

    Nie C, Long D G 2007 IEEE Trans. Geosci. Remote Sens. 45 621

    [10]

    Liu X C, Gao T C, Qin J, Liu L 2010 Acta Phys. Sin. 59 2156 (in Chinese) [刘西川、高太长、秦 健、刘 磊 2010 59 2156]

    [11]

    Huang S X, Zhao X F, Sheng Z 2009 Chin. Phys. B 18 5084

    [12]

    Zeng L, Brown R 1998 J. Appl. Meteorol. 37 1412

    [13]

    Yueh S H, Stiles B W, Liu W T 2003 IEEE T. Geosci. Remote 41 2616

    [14]

    Nielsen S N 2007 M.S. Dissertation (Brigham:Brigham Young University)

    [15]

    Huang S X, Cai Q F, Xiang J, Zhang M 2007 Acta Phys. Sin. 56 3022 (in Chinese) [黄思训、蔡其发、项 杰、张 铭 2007 56 3022]

    [16]

    Cao X Q, Huang S X, Du H D 2008 Acta Phys. Sin. 57 1984 (in Chinese) [曹小群、黄思训、杜华栋 2008 57 1984]

    [17]

    Huang S X, Wu R S 2005 Mathematical and Physical Problems in Atmospheric Sciences (2nd Ed.) (Beijing:Chinese Meteoro- logical Press) p460 (in Chinese) [黄思训、伍荣生 2005 大气科学中的数学物理基础(第二版)(北京:气象出版社)第460页]

    [18]

    Sheng Z, Huang S X 2010 Acta Phys. Sin. 59 1734 (in Chinese) [盛 峥、黄思训 2010 59 1734]

    [19]

    Zhang L, Huang S X, Liu Y D, Zhong J 2010 Acta Phys. Sin. 59 2889 (in Chinese) [张 亮、黄思训、刘宇迪、钟 剑 2010 59 2889]

  • [1] 咸明皓, 刘西川, 印敏, 宋堃, 高太长. 基于星地链路的垂直降雨场反演方法.  , 2020, 69(2): 024301. doi: 10.7498/aps.69.20191232
    [2] 焦亚音, 冉令坤, 李娜, 高守亭, 周冠博. 台风彩虹(2015)高分辨率数值模拟及涡旋Rossby波特征分析.  , 2017, 66(8): 089201. doi: 10.7498/aps.66.089201
    [3] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型.  , 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [4] 姜祝辉, 游小宝, 肖义国. 高度计风速与辐射计风速的变分融合研究.  , 2013, 62(12): 129202. doi: 10.7498/aps.62.129202
    [5] 姜世泰, 高太长, 刘西川, 刘磊, 刘志田. 基于微波链路的降雨场反演方法研究.  , 2013, 62(15): 154303. doi: 10.7498/aps.62.154303
    [6] 钟剑, 费建芳, 黄思训, 黄小刚, 程小平. 多参数背景场误差模型在散射计资料台风风场反演中的应用.  , 2013, 62(15): 159302. doi: 10.7498/aps.62.159302
    [7] 陆文, 严卫, 王蕊, 王迎强. 全极化微波辐射计姿态对观测亮温的影响及消除.  , 2012, 61(1): 018401. doi: 10.7498/aps.61.018401
    [8] 戴兵, 袁银男, 梅德清, 江俊康, 戴珊珊. 椭球模型下通过雾场的多重光散射谱.  , 2012, 61(8): 084201. doi: 10.7498/aps.61.084201
    [9] 周旋, 杨晓峰, 李紫薇, 于暘, 马胜. 降雨对C波段散射计测风的影响及其校正.  , 2012, 61(14): 149202. doi: 10.7498/aps.61.149202
    [10] 张亮, 黄思训, 杜华栋. 散射计资料对台风海平面气压场的反演和定位的新方法研究.  , 2011, 60(11): 119202. doi: 10.7498/aps.60.119202
    [11] 张霖, 张淳民, 简小华. 高层大气风场洛伦兹光谱线型粒子辐射率探测研究.  , 2010, 59(2): 899-906. doi: 10.7498/aps.59.899
    [12] 张亮, 黄思训, 刘宇迪, 钟剑. 变分同化结合广义变分最佳分析对微波散射计资料进行海面风场反演.  , 2010, 59(4): 2889-2897. doi: 10.7498/aps.59.2889
    [13] 刘西川, 高太长, 秦健, 刘磊. 降雨对微波传输特性的影响分析.  , 2010, 59(3): 2156-2162. doi: 10.7498/aps.59.2156
    [14] 李琨, 魏恩泊, 宋金宝. 海表白冠覆盖率的散射计资料反演研究.  , 2010, 59(5): 3607-3610. doi: 10.7498/aps.59.3607
    [15] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究.  , 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [16] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真.  , 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [17] 黄思训, 蔡其发, 项 杰, 张 铭. 台风风场分解.  , 2007, 56(5): 3022-3027. doi: 10.7498/aps.56.3022
    [18] 梁子长, 金亚秋. 非均匀散射层矢量辐射传输(VRT)方程高阶散射解的迭代法.  , 2003, 52(2): 247-255. doi: 10.7498/aps.52.247
    [19] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆.  , 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
    [20] 范钦梁, 张书东, 丁鄂江. 体温计模型的临界行为.  , 1996, 45(4): 545-555. doi: 10.7498/aps.45.545
计量
  • 文章访问数:  9697
  • PDF下载量:  792
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-07
  • 修回日期:  2010-05-05
  • 刊出日期:  2010-05-05

/

返回文章
返回
Baidu
map